Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(9): e0222346, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513656

RESUMO

Micro RNAs (miRNAs) are small single strand non-coding RNAs that regulate gene expression at the post-transcriptional level, either by translational inhibition or mRNA degradation based on the extent of complementarity between the miRNA and its target mRNAs. Potato (Solanum tuberosum L.) is the most important horticultural crop in Argentina. Achieving an integrated control of diseases is crucial for this crop, where frequent agrochemical applications, particularly fungicides, are carried out. A promising strategy is based on promoting induced resistance through the application of environmentally friendly compounds such as phosphites, inorganic salts of phosphorous acid. The use of phosphites in disease control management has proven to be effective. Although the mechanisms underlying their effect remain unclear, we postulated that miRNAs could be involved. Therefore we performed next generation sequencing (NGS) in potato leaves treated and non treated with potassium phosphite (KPhi). We identified 25 miRNAs that were expressed differentially, 14 already annotated in miRBase and 11 mapped to the potato genome as potential new miRNAs. A prediction of miRNA targets showed genes related to pathogen resistance, transcription factors, and oxidative stress. We also analyzed in silico stress and phytohormone responsive cis-acting elements on differentially expressed pre miRNAs. Despite the fact that some of the differentially expressed miRNAs have been already identified, this is to our knowledge the first report identifying miRNAs responsive to a biocompatible stress resistance inducer such as potassium phosphite, in plants. Further characterization of these miRNAs and their target genes might help to elucidate the molecular mechanisms underlying KPhi-induced resistance.


Assuntos
MicroRNAs/genética , Fosfitos/metabolismo , Compostos de Potássio/metabolismo , Solanum tuberosum/genética , Argentina , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Fosfitos/farmacologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética
2.
Plant Physiol Biochem ; 88: 1-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25596554

RESUMO

The use of biocompatible chemical compounds that enhance plant disease resistance through Induced Resistance (IR) is an innovative strategy to improve the yield and quality of crops. Phosphites (Phi), inorganic salts of phosphorous acid, are environment friendly, and have been described to induce disease control. Phi, similar to other plant inductors, are thought to be effective against different types of biotic and abiotic stress, and it is assumed that the underlying signaling pathways probably overlap and interact. The signaling pathways triggered by UV-B radiation, for instance, are known to crosstalk with other signaling routes that respond that biotic stress. In the present work, the effect of potassium phosphite (KPhi) pre-treatment on UV-B stress tolerance was evaluated in potato leaves. Plants were treated with KPhi and, after 3 days, exposed to 2 h/day of UV-B (1.5 Watt m(-2)) for 0, 3 and 6 days. KPhi pre-treatment had a beneficial effect on two photosynthetic parameters, specifically chlorophyll content and expression of the psbA gene. Oxidative stress caused by UV-B was also prevented by KPhi. A decrease in the accumulation of hydrogen peroxide (H2O2) in leaves and an increase in guaiacol peroxidase (POD) and superoxide dismutase (SOD) activities were also observed. In addition, the expression levels of a gene involved in flavonoid synthesis increased in UV-B-stressed plants only when pre-treated with KPhi. Finally, accumulation of glucanases and chitinases was induced by UV-B stress and markedly potentiated by KPhi pre-treatment. Altogether, this is the first report that shows a contribution of KPhi in UV-B stress tolerance in potato plants.


Assuntos
Adaptação Fisiológica , Clorofila/metabolismo , Fosfitos/farmacologia , Fotossíntese/efeitos dos fármacos , Compostos de Potássio/farmacologia , Solanum tuberosum/efeitos dos fármacos , Estresse Fisiológico , Raios Ultravioleta , Quitinases/metabolismo , Flavonoides/genética , Expressão Gênica , Genes de Plantas , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/efeitos da radiação , Superóxido Dismutase/metabolismo
3.
Metabolism ; 62(9): 1287-95, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23706747

RESUMO

OBJECTIVE: Hypothyroid state and aging are associated with impairment in water reabsorption and changes in aquaporin water channel type 2 (AQP2). Nitric oxide (NO) is involved in AQP2 trafficking to the apical plasma membrane in medullary collecting duct cells. The purpose of this study was to investigate whether aging and hypothyroidism alter renal function, and whether medullary NO and AQP2 are implicated in maintaining water homeostasis. MATERIALS/METHODS: Sprague-Dawley rats aged 2 and 18months old were treated with 0.02% methimazole (w/v) during 28days. Renal function was examined and NO synthase (NOS) activity ([(14)C (U)]-L-arginine to [(14)C (U)]-L-citrulline assays), NOS, caveolin-1 and -3 and AQP2 protein levels were determined in medullary tissue (Western blot). Plasma membrane fraction and intracellular vesicle fraction of AQP2 were evaluated by Western blot and immunohistochemistry. RESULTS: A divergent response was observed in hypothyroid rats: while young rats exhibited polyuria with decreased medullary NOS activity, adult rats exhibited a decrease in urine output with increased NOS activity. AQP2 was increased with hypothyroidism, but while young rats exhibited increased AQP2 in plasma membrane, adult rats did so in the cytosolic site. CONCLUSIONS: Hypothyroidism contributes in a differential way to aging-induced changes in renal function, and medullary NO and AQP2 would be implicated in maintaining water homeostasis.


Assuntos
Envelhecimento/metabolismo , Aquaporina 2/fisiologia , Água Corporal/metabolismo , Homeostase , Hipotireoidismo/metabolismo , Óxido Nítrico/fisiologia , Animais , Rim/metabolismo , Masculino , Óxido Nítrico Sintase/metabolismo , Ratos , Ratos Sprague-Dawley
4.
J Plant Physiol ; 169(14): 1417-24, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22727804

RESUMO

Although phosphite is widely used to protect plants from pathogenic oomycetes on a wide range of horticultural crops, the molecular mechanisms behind phosphite induced resistance are poorly understood. The aim of this work was to assess the effects of potassium phosphite (KPhi) on potato plant defense responses to infection with Phytophtora infestans (Pi). Pathogen development was severely restricted and there was also an important decrease in lesion size in infected KPhi-treated leaves. We demonstrated that KPhi primed hydrogen peroxide and superoxide anion production in potato leaves at 12 h post-inoculation with Pi. Moreover, the KPhi-treated leaves showed an increased and earlier callose deposition as compared with water-treated plants, beginning 48 h after inoculation. In contrast, callose deposition was not detected in water-treated leaves until 72 h after inoculation. In addition, we carried out RNA gel blot analysis of genes implicated in the responses mediated by salicylic (SA) and jasmonic acid (JA). To this end, we examined the temporal expression pattern of StNPR1 and StWRKY1, two transcription factors related to SA pathway, and StPR1 and StIPII, marker genes related to SA and JA pathways, respectively. The expression of StNPR1 and StWRKY1 was enhanced in response to KPhi treatment. In contrast, StIPII was down regulated in both KPhi- and water-treated leaves, until 48 h after infection with Pi, suggesting that the regulation of this gene could be independent of the KPhi treatment. Our results indicate that KPhi primes the plant for an earlier and more intense response to infection and that SA would mediate this response.


Assuntos
Fosfitos/farmacologia , Phytophthora infestans/fisiologia , Compostos de Potássio/farmacologia , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucanos/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Peróxido de Hidrogênio/metabolismo , Phytophthora infestans/crescimento & desenvolvimento , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/genética , Superóxidos/metabolismo
5.
EMBO Rep ; 6(5): 458-63, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15832171

RESUMO

The woodchuck post-transcriptional regulatory element (WPRE) can naturally accumulate hepatitis transcripts in the cytoplasm, and has been recently exploited as an enhancer of transgene expression. The retention of mutant myotonic dystrophy protein kinase (DMPK) transcripts in the nucleus of myotonic dystrophy (DM) cells has an important pathogenic role in the disease, resulting in pleiotropic effects including delayed myoblast differentiation. In this study, we report the first use of WPRE as a tool to enhance nuclear export of an aberrantly retained messenger RNA. Stable cell lines expressing the normal and mutant DMPK 3' UTR (3' untranslated region) complementary DNA, with or without WPRE, were produced. It is noteworthy that WPRE stimulated extensive transport of mutant transcripts to the cytoplasm. This was associated with repair of the defective cellular MyoD levels and a subsequent increase in myoblast differentiation. These results provide the basis for a cellular model that can be exploited in DM and in the study of RNA transport mechanisms.


Assuntos
Regiões 3' não Traduzidas/genética , Núcleo Celular/metabolismo , Vírus da Hepatite B da Marmota/genética , Proteína MyoD/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Diferenciação Celular , Células Cultivadas , Citoplasma/metabolismo , Genes Reguladores , Genes Virais , Camundongos , Mutação , Proteína MyoD/genética , Mioblastos/citologia , Mioblastos/metabolismo , Miotonina Proteína Quinase , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...