Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAMA Netw Open ; 2(7): e196700, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31268541

RESUMO

Importance: Analyses of female representation in clinical studies have been limited in scope and scale. Objective: To perform a large-scale analysis of global enrollment sex bias in clinical studies. Design, Setting, and Participants: In this cross-sectional study, clinical studies from published articles from PubMed from 1966 to 2018 and records from Aggregate Analysis of ClinicalTrials.gov from 1999 to 2018 were identified. Global disease prevalence was determined for male and female patients in 11 disease categories from the Global Burden of Disease database: cardiovascular, diabetes, digestive, hepatitis (types A, B, C, and E), HIV/AIDS, kidney (chronic), mental, musculoskeletal, neoplasms, neurological, and respiratory (chronic). Machine reading algorithms were developed that extracted sex data from tables in articles and records on December 31, 2018, at an artificial intelligence research institute. Male and female participants in 43 135 articles (792 004 915 participants) and 13 165 records (12 977 103 participants) were included. Main Outcomes and Measures: Sex bias was defined as the difference between the fraction of female participants in study participants minus prevalence fraction of female participants for each disease category. A total of 1000 bootstrap estimates of sex bias were computed by resampling individual studies with replacement. Sex bias was reported as mean and 95% bootstrap confidence intervals from articles and records in each disease category over time (before or during 1993 to 2018), with studies or participants as the measurement unit. Results: There were 792 004 915 participants, including 390 470 834 female participants (49%), in articles and 12 977 103 participants, including 6 351 619 female participants (49%), in records. With studies as measurement unit, substantial female underrepresentation (sex bias ≤ -0.05) was observed in 7 of 11 disease categories, especially HIV/AIDS (mean for articles, -0.17 [95% CI, -0.18 to -0.16]), chronic kidney diseases (mean, -0.17 [95% CI, -0.17 to -0.16]), and cardiovascular diseases (mean, -0.14 [95% CI, -0.14 to -0.13]). Sex bias in articles for all categories combined was unchanged over time with studies as measurement unit (range, -0.15 [95% CI, -0.16 to -0.13] to -0.10 [95% CI, -0.14 to -0.06]), but improved from before or during 1993 (mean, -0.11 [95% CI, -0.16 to -0.05]) to 2014 to 2018 (mean, -0.05 [95% CI, -0.09 to -0.02]) with participants as the measurement unit. Larger study size was associated with greater female representation. Conclusions and Relevance: Automated extraction of the number of participants in clinical reports provides an effective alternative to manual analysis of demographic bias. Despite legal and policy initiatives to increase female representation, sex bias against female participants in clinical studies persists. Studies with more participants have greater female representation. Differences between sex bias estimates with studies vs participants as measurement unit, and between articles vs records, suggest that sex bias with both measures and data sources should be reported.


Assuntos
Regras de Decisão Clínica , Estudos Clínicos como Assunto , Armazenamento e Recuperação da Informação/métodos , Seleção de Pacientes , PubMed/estatística & dados numéricos , Sexismo , Adulto , Estudos Clínicos como Assunto/normas , Estudos Clínicos como Assunto/estatística & dados numéricos , Estudos Transversais , Precisão da Medição Dimensional , Processamento Eletrônico de Dados , Feminino , Humanos , Masculino , Sexismo/prevenção & controle , Sexismo/estatística & dados numéricos
2.
J Proteome Res ; 9(10): 5438-44, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20731383

RESUMO

Electron-transfer dissociation (ETD) induces fragmentation along the peptide backbone by transferring an electron from a radical anion to a protonated peptide. In contrast with collision-induced dissociation, side chains and modifications such as phosphorylation are left intact through the ETD process. Because the precursor charge state is an important input to MS/MS sequence database search tools, the ability to accurately determine the precursor charge is helpful for the identification process. Furthermore, because ETD can be applied to large, highly charged peptides, the need for accurate precursor charge state determination is magnified. Otherwise, each spectrum must be searched repeatedly using a large range of possible precursor charge states. To address this problem, we have developed an ETD charge state prediction tool based on support vector machine classifiers that is demonstrated to exhibit superior classification accuracy while minimizing the overall number of predicted charge states. The tool is freely available, open source, cross platform compatible, and demonstrated to perform well when compared with an existing charge state prediction tool. The program is available from http://code.google.com/p/etdz/.


Assuntos
Elétrons , Peptídeos/análise , Proteínas/análise , Espectrometria de Massas em Tandem/métodos , Algoritmos , Transporte de Elétrons , Peptídeos/química , Proteínas/química , Proteômica/métodos , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...