Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 14(6): 2622-2636, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646657

RESUMO

Rationale: In recent years, nicotinamide adenine dinucleotide (NAD+) precursors (Npre) have been widely employed to ameliorate female reproductive problems in both humans and animal models. However, whether and how Npre plays a role in the male reproductive disorder has not been fully clarified. Methods: In the present study, a busulfan-induced non-obstructive azoospermic mouse model was used, and Npre was administered for five weeks following the drug injection, with the objective of reinstating spermatogenesis and fertility. Initially, we assessed the NAD+ level, germ cell types, semen parameters and sperm fertilization capability. Subsequently, testis tissues were examined through RNA sequencing analysis, ELISA, H&E, immunofluorescence, quantitative real-time PCR, and Western blotting techniques. Results: The results indicated that Npre restored normal level of NAD+ in blood and significantly alleviated the deleterious effects of busulfan (BU) on spermatogenesis, thereby partially reestablishing fertilization capacity. Transcriptome analysis, along with recovery of testicular Fe2+, GSH, NADPH, and MDA levels, impaired by BU, and the fact that Fer-1, an inhibitor of ferroptosis, restored spermatogenesis and semen parameters close to CTRL values, supported such possibility. Interestingly, the reduction in SIRT2 protein level by the specific inhibitor AGK2 attenuated the beneficial effects of Npre on spermatogenesis and ferroptosis by affecting PGC-1α and ACLY protein levels, thus suggesting how these compounds might confer spermatogenesis protection. Conclusion: Collectively, these findings indicate that NAD+ protects spermatogenesis against ferroptosis, probably through SIRT2 dependent mechanisms. This underscores the considerable potential of Npre supplementation as a feasible strategy for preserving or restoring spermatogenesis in specific conditions of male infertility and as adjuvant therapy to preserve male fertility in cancer patients receiving sterilizing treatments.


Assuntos
Bussulfano , Ferroptose , NAD , Sirtuína 2 , Espermatogênese , Animais , Bussulfano/farmacologia , Masculino , Espermatogênese/efeitos dos fármacos , Camundongos , NAD/metabolismo , Ferroptose/efeitos dos fármacos , Sirtuína 2/metabolismo , Sirtuína 2/genética , Modelos Animais de Doenças , Testículo/metabolismo , Testículo/efeitos dos fármacos , Azoospermia/tratamento farmacológico , Azoospermia/metabolismo , Azoospermia/induzido quimicamente
2.
Methods Mol Biol ; 2770: 3-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351442

RESUMO

In all organisms with sexual reproduction, sperm and oocytes derive from embryonic precursors termed primordial germ cells (PGCs) which pass on genetic information to subsequent generations. Studies aimed to unravel PGC development at molecular level in mammals can be traced at the early 1980s and were hampered by the difficulty in obtaining both sufficient quantities and purity of PGCs. For many laboratories, the isolation and purification methods of PGCs at different stages from embryos are the most shortcut and affordable tool to study many aspects of their development at cellular and molecular levels. In the present chapter, I focus on immunomagnetic cell sorting (MACS) and fluorescence-activated cell sorting (FACS) methods used in my laboratory for the purification of mouse PGCs from 10.5 to 12.5 dpc embryos before their differentiation in oogonia/oocytes in female and prospermatogonia in male.


Assuntos
Células Germinativas , Sêmen , Animais , Masculino , Feminino , Camundongos , Separação Imunomagnética/métodos , Diferenciação Celular , Citometria de Fluxo , Mamíferos
4.
Cell Death Discov ; 9(1): 276, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37518361

RESUMO

A faithful reconstitution of the complete process of oogenesis in vitro is helpful for understanding the molecular mechanisms, genetics, and epigenetic changes related to gametogenesis; it can also be useful for clinical drug screening, disease research, and regenerative medicine. To this end, given the consensus that murine female germ cells initiate meiosis at E13.5, substantial works have reported the successful generation of fertile oocytes using E12.5 female gonads as starting materials. Nevertheless, our data demonstrated that murine germ cells at E12.5 have heterogeneously initiated a meiotic transcriptional program based on a measurement of pre-mRNAs (unspliced) and mature mRNAs (spliced) at a single-cell level. Therefore, to establish a platform that faithfully recapitulates the entire process in vitro (from premeiotic murine germ cells to fully developed oocytes), we here report a novel three-dimensional organoid culture (3-DOC) system, which successfully induced fully developed oocytes from E11.5 premeiotic female germ cells (oogonia). Compared with 2D culture and other 3D culture methods, this new culture system is more cost-effective and can create high-quality oocytes similar to in vivo oocytes. In summary, our new culture platform provides an experimental model for future research in regenerative medicine and reproductive biology.

5.
Stem Cell Rev Rep ; 19(7): 2274-2283, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37338786

RESUMO

In the last two decades, considerable progress has been made in the derivation of mammalian germ cells from pluripotent stem cells such as Embryonic Stem Cells (ESCs) and induced Pluripotent Stem Cells (iPSCs). The pluripotent stem cells are generally first induced into pre-gastrulating endoderm/mesoderm-like status and then specified into putative primordial germ cells (PGCs) termed PGC-like cells (PGCLCs) which possess the potential to generate oocytes and sperms. Adipose-derived mesenchymal stromal cells (ASCs) are multipotent cells, having the capacity to differentiate into cell types such as adipocytes, osteocytes and chondrocytes. Since no information is available about the capability of female human ASCs (hASCs) to generate PGCLCs, we compared protocols to produce such cells from hASCs themselves or from hASC-derived iPSCs. The results showed that, providing pre-induction into a peri-gastrulating endoderm/mesoderm-like status, hASCs can generate PGCLCs. This process, however, shows a lower efficiency than when hASC-derived iPSCs are used as starting cells. Although hASCs possess multipotency and express mesodermal genes, direct induction into PGCLCs resulted less efficient.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Animais , Humanos , Feminino , Células Germinativas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mamíferos
6.
Environ Pollut ; 329: 121729, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116564

RESUMO

Aflatoxins B1 (AFB1), a type I carcinogen widely present in the environment, not only poses a danger to animal husbandry, but also poses a potential threat to human reproductive health, but its mechanism is still unclear. To address this question, multi-omics were performed on porcine Sertoli cells and mice testis. The data suggest that AFB1 induced testicular damage manifested as decreased expression of GJA1, ZO1 and OCCLUDIN in mice (p < 0.01) and inhibition of porcine Sertoli cell proliferation. Transcriptomic analysis suggested changes in noncoding RNA expression profiles that affect the cell cycle-related Ras/PI3K/Akt signaling pathway after AFB1 exposure both in mice and pigs. Specifically, AFB1 caused abnormal cell cycle of testis with the characterization of decreased expressions of CCNA1, CCNB1 and CDK1 (p < 0.01). Flow cytometry revealed that the G2/M phase was significantly increased after AFB1 exposure. Meanwhile, AFB1 downregulated the expressions of Ras, PI3K and AKT both in porcine Sertoli cell (p < 0.01) and mice testis (p < 0.01). Metabolome analysis verified the alterations in the PI3K/Akt signaling pathway (p < 0.05). Moreover, the joint analysis of metabolome and microbiome found that the changes of metabolites were correlated with the expression of flora. In conclusion, we have demonstrated that AFB1 impairs testicular development via the cell cycle-related Ras/PI3K/Akt signaling.


Assuntos
Aflatoxina B1 , Ciclo Celular , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Masculino , Camundongos , Aflatoxina B1/toxicidade , Divisão Celular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Suínos
7.
Stem Cell Res Ther ; 14(1): 17, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737797

RESUMO

BACKGROUND: Many laboratories have described the in vitro isolation of multipotent cells with stem cell properties from the skin of various species termed skin-derived stem cells (SDSCs). However, the cellular origin of these cells and their capability to give rise, among various cell types, to male germ cells, remain largely unexplored. METHODS: SDSCs were isolated from newborn mice skin, and then differentiated into primordial germ cell-like cells (PGCLCs) in vitro. Single-cell RNA sequencing (scRNA-seq) was then applied to dissect the cellular origin of SDSCs using cells isolated from newborn mouse skin and SDSC colonies. Based on an optimized culture strategy, we successfully generated spermatogonial stem cell-like cells (SSCLCs) in vitro. RESULTS: Here, using scRNA-seq and analyzing the profile of 7543 single-cell transcriptomes from newborn mouse skin and SDSCs, we discovered that they mainly consist of multipotent papillary dermal fibroblast progenitors (pDFPs) residing in the dermal layer. Moreover, we found that epidermal growth factor (EGF) signaling is pivotal for the capability of these progenitors to proliferate and form large colonies in vitro. Finally, we optimized the protocol to efficiently generate PGCLCs from SDSCs. Furthermore, PGCLCs were induced into SSCLCs and these SSCLCs showed meiotic potential when cultured with testicular organoids. CONCLUSIONS: Our findings here identify pDFPs as SDSCs derived from newborn skin and show for the first time that such precursors can be induced to generate cells of the male germline.


Assuntos
Células Germinativas , Células-Tronco Hematopoéticas , Animais , Camundongos , Células Germinativas/metabolismo , Diferenciação Celular , Células-Tronco Multipotentes , Células Cultivadas , Fibroblastos
8.
Cell Death Dis ; 14(2): 134, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36797258

RESUMO

In order to reveal the complex mechanism governing the mitotic/meiotic switch in female germ cells at epigenomic and genomic levels, we examined the chromatin accessibility (scATAC-seq) and the transcriptional dynamics (scRNA-seq) in germ cells of mouse embryonic ovary between E11.5 to 13.5 at single-cell resolution. Adopting a strict transcription factors (TFs) screening framework that makes it easier to understand the single-cell chromatin signature and a TF interaction algorithm that integrates the transcript levels, chromatin accessibility, and motif scores, we identified 14 TFs potentially regulating the mitotic/meiotic switch, including TCFL5, E2F1, E2F2, E2F6, E2F8, BATF3, SP1, FOS, FOXN3, VEZF1, GBX2, CEBPG, JUND, and TFDP1. Focusing on TCFL5, we constructed Tcfl5+/- mice which showed significantly reduced fertility and found that decreasing TCFL5 expression in cultured E12.5 ovaries by RNAi impaired meiotic progression from leptotene to zygotene. Bioinformatics analysis of published results of the embryonic germ cell transcriptome and the finding that in these cells central meiotic genes (Stra8, Tcfl5, Sycp3, and E2f2) possess open chromatin status already at the mitotic stage together with other features of TCFL5 (potential capability to interact with core TFs and activate meiotic genes, its progressive activation after preleptotene, binding sites in the promoter region of E2f2 and Sycp3), indicated extensive amplification of transcriptional programs associated to mitotic/meiotic switch with an important contribution of TCFL5. We conclude that the identified TFs, are involved in various stages of the mitotic/meiotic switch in female germ cells, TCFL5 primarily in meiotic progression. Further investigation on these factors might give a significant contribution to unravel the molecular mechanisms of this fundamental process of oogenesis and provide clues about pathologies in women such as primary ovarian insufficiency (POI) due at least in part to meiotic defects.


Assuntos
Fatores de Transcrição , Transcriptoma , Feminino , Animais , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Epigenômica , Meiose/genética , Cromatina/genética
9.
Chemosphere ; 310: 136811, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36220427

RESUMO

Di (2-ethylhexyl) phthalate (DEHP) is a widely used plastics additive that growing evidence indicates as endocrine disruptor able to negatively affect various reproductive processes both in female and male animals, including humans. However, the precise molecular mechanism of such actions is not completely understood. In the present study, scRNA-seq was performed on the ovaries of offspring from mothers exposed to DEHP from 16.5 days post coitum to 3 days post-partum, when the primordial follicle (PF) stockpile is established. While the histological observations of the offspring ovaries from DEHP exposed mothers confirmed previous data about a distinct reduction of oocytes enclosed in PFs. Focusing on oocytes, scRNA-seq analyses showed that the genes that mostly changed by DEHP were enriched GO terms related to histone H3-K4 methylation. Moreover, we observed H3K4me3 level, an epigenetics modification of H3 that is crucial for chromatin transcription, decreased by 40.28% (P < 0.01) in DEHP-treated group compared with control. When the newborn ovaries were cultured in vitro, the DEHP effects were abolished by tamoxifen (an estrogen receptor antagonist) or overexpression of Smyd3 (one specific methyltransferase of H3K4me3), in particular, the percentage of oocyte enclosed in PF was increased by 15.39% in DEHP plus Smyd3 overexpression group than of DEHP group (P < 0.01), which was accompanied by the upregulation of H3K4me3. Collectively, the present results discover Smyd3-H3K4me3 as a novel target of the deleterious ER-mediated effect of DEHP on PF formation during early folliculogenesis in the mouse and highlight epigenetics changes as prominent targets of endocrine disruptors like DEHP.


Assuntos
Dietilexilftalato , Disruptores Endócrinos , Animais , Feminino , Masculino , Camundongos , Dietilexilftalato/toxicidade , Disruptores Endócrinos/toxicidade , Histona-Lisina N-Metiltransferase , Histonas , Folículo Ovariano
10.
Ecotoxicol Environ Saf ; 248: 114344, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455349

RESUMO

Considering that research has mainly focussed on how excessive iron supplementation leads to reproductive cytotoxicity, there is a lack of in-depth research on reproductive system disorders caused by iron deficiency. To gain a better understanding of the effects of iron deficiency on the reproductive system, especially spermatogenesis, we first constructed a mouse model of iron deficiency. We employed multi-omic analysis, including transcriptomics, metabolomics, and microbiomics, to comprehensively dissect the impact of iron deficiency on spermatogenesis. Moreover, we verified our findings in detail using western blot, immunofluorescence, immunohistochemistry, qRT-PCR and other techniques. Microbiomic analysis revealed altered gut microbiota in iron-deficient mice, and functional predictive analysis showed that gut microbiota can regulate spermatogenesis. The transcriptomic data indicated that iron deficiency directly alters expression of meiosis-related genes. Transcriptome data also revealed that iron deficiency indirectly regulates spermatogenesis by affecting hormone synthesis, findings confirmed by metabolomic data, western blot and immunofluorescence. Interestingly, competing endogenous RNA networks also play a vital role in regulating spermatogenesis after iron deficiency. Taken together, the data elucidate that iron deficiency impairs spermatogenesis and increases the risk of male infertility by affecting hormone synthesis and promoting gut microbiota imbalance.


Assuntos
Deficiências de Ferro , Masculino , Camundongos , Animais , Espermatogênese , Metabolômica , Ferro , Hormônios
13.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293427

RESUMO

Meiosis is the unique division of germ cells resulting in the recombination of the maternal and paternal genomes and the production of haploid gametes. In mammals, it begins during the fetal life in females and during puberty in males. In both cases, entering meiosis requires a timely switch from the mitotic to the meiotic cell cycle and the transition from a potential pluripotent status to meiotic differentiation. Revealing the molecular mechanisms underlying these interrelated processes represents the essence in understanding the beginning of meiosis. Meiosis facilitates diversity across individuals and acts as a fundamental driver of evolution. Major differences between sexes and among species complicate the understanding of how meiosis begins. Basic meiotic research is further hindered by a current lack of meiotic cell lines. This has been recently partly overcome with the use of primordial-germ-cell-like cells (PGCLCs) generated from pluripotent stem cells. Much of what we know about this process depends on data from model organisms, namely, the mouse; in mice, the process, however, appears to differ in many aspects from that in humans. Identifying the mechanisms and molecules controlling germ cells to enter meiosis has represented and still represents a major challenge for reproductive medicine. In fact, the proper execution of meiosis is essential for fertility, for maintaining the integrity of the genome, and for ensuring the normal development of the offspring. The main clinical consequences of meiotic defects are infertility and, probably, increased susceptibility to some types of germ-cell tumors. In the present work, we report and discuss data mainly concerning the beginning of meiosis in mammalian female germ cells, referring to such process in males only when pertinent. After a brief account of this process in mice and humans and an historical chronicle of the major hypotheses and progress in this topic, the most recent results are reviewed and discussed.


Assuntos
Meiose , Células-Tronco Pluripotentes , Humanos , Masculino , Feminino , Camundongos , Animais , Meiose/genética , Células Germinativas/metabolismo , Diferenciação Celular , Mamíferos/genética
14.
Cell Mol Life Sci ; 79(5): 258, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35469021

RESUMO

Previous works have shown that zearalenone (ZEA), as an estrogenic pollutant, has adverse effects on mammalian folliculogenesis. In the present study, we found that prolonged exposure of female mice to ZEA around the end of pregnancy caused severe impairment of primordial follicle formation in the ovaries of newborn mice and altered the expression of many genes in oocytes as revealed by single-cell RNA sequencing (scRNA-seq). These changes were associated with morphological and molecular alterations of mitochondria, increased autophagic markers in oocytes, and epigenetic changes in the ovaries of newborn mice from ZEA-exposed mothers. The latter increased expression of HDAC2 deacetylases was leading to decreased levels of H3K9ac and H4K12ac. Most of these modifications were relieved when the expression of  Hdac2 in newborn ovaries was reduced by RNA interference during in vitro culture in the presence of ZEA. Such changes were also alleviated in offspring ovaries from mothers treated with both ZEA and the coenzyme Q10 (CoQ10), which is known to be able to restore mitochondrial activities. We concluded that impaired mitochondrial activities in oocytes caused by ZEA are at the origin of metabolic alterations that modify the expression of genes controlling autophagy and primordial follicle assembly through changes in epigenetic histones.


Assuntos
Ovário , Zearalenona , Animais , Feminino , Humanos , Mamíferos , Camundongos , Mitocôndrias , Mães , Oócitos/metabolismo , Gravidez , Interferência de RNA , Zearalenona/metabolismo , Zearalenona/toxicidade
15.
Gene ; 829: 146511, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35447234

RESUMO

Zearalenone (ZEN), a common non-steroidal estrogenic mycotoxin of the Fusarium genus, is one of the most frequent and powerful contaminant of grains and cereal products representing a serious threat for people and livestock health. In fact, ZEN causes cytotoxicity and genotoxicity in a variety of cell types at least in part through binding to estrogen receptors (ERs). The main pathways through which ZEN induces such effects remain, however, elusive. In particular, how the mycotoxin causes DNA damage, dysregulates DNA repair mechanisms, changes epigenome of targeted cells and, not least, affects chromatin conformation and non-coding RNA (ncRNA), is unclear. In the present paper, following extensive review of the literature about such ZEN effects and our own experience in studying the effects of this compound on reproductive processes, we propose that increased production of reactive oxygen species (ROS) and consequently oxidative stress (OS) are central in ZEN genotoxicity. Besides to shed light on the action mechanisms of the mycotoxin, this notion might help to develop effective strategies to counteract its deleterious biological effects.


Assuntos
Micotoxinas , Zearalenona , Dano ao DNA , Humanos , Micotoxinas/farmacologia , Estresse Oxidativo , Zearalenona/toxicidade
16.
Front Cell Dev Biol ; 10: 819044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359444

RESUMO

Emerging evidence shows that m6A is the most abundant modification in eukaryotic RNA molecules. It has only recently been found that this epigenetic modification plays an important role in many physiological and pathological processes, such as cell fate commitment, immune response, obesity, tumorigenesis, and relevant for the present review, gametogenesis. Notably the RNA metabolism process mediated by m6A is controlled and regulated by a series of proteins termed writers, readers and erasers that are highly expressed in germ cells and somatic cells of gonads. Here, we review and discuss the expression and the functional emerging roles of m6A in gametogenesis and early embryogenesis of mammals. Besides updated references about such new topics, readers might find in the present work inspiration and clues to elucidate epigenetic molecular mechanisms of reproductive dysfunction and perspectives for future research.

17.
Cells ; 11(7)2022 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-35406774

RESUMO

It is well known that secreted and exosomal proteins are associated with a broad range of physiological processes involving tissue homeostasis and differentiation. In the present paper, our purpose was to characterize the proteome of the culture medium in which the oocytes within the primordial/primary follicles underwent apoptosis induced by cisplatin (CIS) or were, for the most part, protected by LH against the drug. To this aim, prepubertal ovarian tissues were cultured under control and in the presence of CIS, LH, and CIS + LH. The culture media were harvested after 2, 12, and 24 h from chemotherapeutic drug treatment and analyzed by liquid chromatography-mass spectrometry (LC-MS). We found that apoptotic conditions generated by CIS in the cultured ovarian tissues and/or oocytes are reflected in distinct changes in the extracellular microenvironment in which they were cultured. These changes became evident mainly from 12 h onwards and were characterized by the inhibition or decreased release of a variety of compounds, such as the proteases Htra1 and Prss23, the antioxidants Prdx2 and Hbat1, the metabolic regulators Ldha and Pkm, and regulators of apoptotic pathways such as Tmsb4x. Altogether, these results confirm the biological relevance of the LH action on prepuberal ovaries and provide novel information about the proteins released by the ovarian tissues exposed to CIS and LH in the surrounding microenvironment. These data might represent a valuable resource for future studies aimed to clarify the effects and identify biomarkers of these compounds' action on the developing ovary.


Assuntos
Cisplatino , Folículo Ovariano , Animais , Apoptose , Cisplatino/metabolismo , Cisplatino/farmacologia , Feminino , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo
18.
J Assist Reprod Genet ; 39(4): 783-792, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35352316

RESUMO

Ovarian age is classically considered the main cause of female reproductive infertility. In women, the process proceeds as an ongoing decline in the primordial follicle stockpile and it is associated with reduced fertility in the mid-thirties, irregular menstruation from the mid-forties, cessation of fertility, and, eventually, menopause in the early fifties. Reproductive aging is historically associated with changes in oocyte quantity and quality. However, besides the oocyte, other cellular as well as environmental factors have been the focus of more recent investigations suggesting that ovarian decay is a complex and multifaceted process. Among these factors, we will consider mitochondria and oxidative stress as related to nutrition, changes in extracellular matrix molecules, and the associated ovarian stromal compartment where immune cells of both the native and adaptive systems seem to play an important role. Understanding such processes is crucial to design treatment strategies to  slow down ovarian aging and consequently prolong reproductive lifespan and, more to this, alleviaingt side effects of menopause on the musculoskeletal, cardiovascular, and nervous systems.


Assuntos
Infertilidade Feminina , Oócitos , Envelhecimento/fisiologia , Feminino , Células da Granulosa , Humanos , Infertilidade Feminina/terapia , Oócitos/fisiologia , Folículo Ovariano/fisiologia , Ovário/fisiologia
19.
Histochem Cell Biol ; 157(1): 39-50, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34586448

RESUMO

Skin-derived stem cells (SDSCs) are a class of adult stem cells (ASCs) that have the ability to self-renew and differentiate. The regulation mechanisms involved in the differentiation of SDSCs are a hot topic. In this paper, we explore the link between the transcriptional regulator yes-associated protein (YAP) and the fate of porcine SDSCs (pSDSCs). We found that lysophosphatidylcholine (LPC) activates YAP, promotes pSDSCs pluripotency, and counteracts transdifferentiation of pSDSCs into porcine primordial germ cell-like cells (pPGCLCs). YAP promotes the pluripotent state of pSDSCs by maintaining the high expression of the pluripotency genes Oct4 and Sox2. The overexpression of YAP prevented the differentiation of pSDSCs, and the depletion of YAP by small interfering RNA (siRNAs) suppressed the self-renewal of pSDSCs. In addition, we found that YAP regulates the fate of pSDSCs through a mechanism related to the Wnt/ß-catenin signaling pathway. When an activator of the Wnt/ß-catenin signaling pathway, CHIR99021, was added to pSDSCs overexpressing YAP, the ability of pSDSCs to differentiate was partially restored. Conversely, when XAV939, an inhibitor of the Wnt/ß-catenin signaling pathway, was added to YAP knockdown pSDSCs a higher self-renewal ability resulted. Taken together, our results suggested that YAP and the Wnt/ß-catenin signaling pathway interact to regulate the fate of pSDSCs.


Assuntos
Células-Tronco , Via de Sinalização Wnt , Proteínas de Sinalização YAP , beta Catenina , Animais , Diferenciação Celular , Proliferação de Células , Células-Tronco/metabolismo , Suínos , Proteínas de Sinalização YAP/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...