Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pathol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828491

RESUMO

Pancreatic cancer is a highly aggressive disease. Developing new strategies and using powerful methodologies for its early detection, coupled with in-depth comprehension of the mechanisms governing subtype evolution, will not only help to stratify PDAC patients' prognosis but also prevent unfavourable subtype plasticity upon treatment with chemotherapy. Michiels et al have developed a new approach to better capture PDAC heterogeneity at the single tumour duct spatial resolution level, leveraging detection of transcripts for mutant KRAS and multiple subtype markers. Their study sheds light on the association of mutant KRAS and PDAC phenotypic heterogeneity. The findings support functional cooperation of plastic tumour cells and opens new challenges towards PDAC patient stratification and therapeutic intervention. Pathology-based tools will be of prime importance to address these issues in a clinically meaningful manner. © 2024 The Pathological Society of Great Britain and Ireland.

2.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405949

RESUMO

The nucleosome remodeling factor BPTF is required for the deployment of the MYC-driven transcriptional program. Deletion of one Bptf allele delays tumor progression in mouse models of pancreatic cancer and lymphoma. In neuroblastoma, MYCN cooperates with the transcriptional core regulatory circuitry (CRC). High BPTF levels are associated with high-risk features and decreased survival. BPTF depletion results in a dramatic decrease of cell proliferation. Bulk RNA-seq, single-cell sequencing, and tissue microarrays reveal a positive correlation of BPTF and CRC transcription factor expression. Immunoprecipitation/mass spectrometry shows that BPTF interacts with MYCN and the CRC proteins. Genome-wide distribution analysis of BPTF and CRC in neuroblastoma reveals a dual role for BPTF: 1) it co-localizes with MYCN/MYC at the promoter of genes involved in cell cycle and 2) it co-localizes with the CRC at super-enhancers to regulate cell identity. The critical role of BPTF across neuroblastoma subtypes supports its relevance as a therapeutic target.

3.
Nat Commun ; 14(1): 3761, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353485

RESUMO

Pancreatic acinar cells rely on PTF1 and other transcription factors to deploy their transcriptional program. We identify NFIC as a NR5A2 interactor and regulator of acinar differentiation. NFIC binding sites are enriched in NR5A2 ChIP-Sequencing peaks. Nfic knockout mice have a smaller, histologically normal, pancreas with reduced acinar gene expression. NFIC binds and regulates the promoters of acinar genes and those involved in RNA/protein metabolism, and Nfic knockout pancreata show defective ribosomal RNA maturation. NFIC dampens the endoplasmic reticulum stress program through binding to gene promoters and is required for resolution of Tunicamycin-mediated stress. NFIC is down-regulated during caerulein pancreatitis and is required for recovery after damage. Normal human pancreata with low levels of NFIC transcripts display reduced expression of genes down-regulated in Nfic knockout mice. NFIC expression is down-regulated in mouse and human pancreatic ductal adenocarcinoma. Consistently, Nfic knockout mice develop a higher number of mutant Kras-driven pre-neoplastic lesions.


Assuntos
Carcinoma Ductal Pancreático , Fatores de Transcrição NFI , Neoplasias Pancreáticas , Ribossomos , Animais , Humanos , Camundongos , Células Acinares/metabolismo , Carcinoma Ductal Pancreático/patologia , Camundongos Knockout , Fatores de Transcrição NFI/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/patologia
4.
Gut ; 72(3): 535-548, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36109153

RESUMO

OBJECTIVE: GATA6 is a key regulator of the classical phenotype in pancreatic ductal adenocarcinoma (PDAC). Low GATA6 expression associates with poor patient outcome. GATA4 is the second most expressed GATA factor in the pancreas. We assessed whether, and how, GATA4 contributes to PDAC phenotype and analysed the association of expression with outcome and response to chemotherapy. DESIGN: We analysed PDAC transcriptomic data, stratifying cases according to GATA4 and GATA6 expression and identified differentially expressed genes and pathways. The genome-wide distribution of GATA4 was assessed, as well as the effects of GATA4 knockdown. A multicentre tissue microarray study to assess GATA4 and GATA6 expression in samples (n=745) from patients with resectable was performed. GATA4 and GATA6 levels were dichotomised into high/low categorical variables; association with outcome was assessed using univariable and multivariable Cox regression models. RESULTS: GATA4 messenger RNA is enriched in classical, compared with basal-like tumours. We classified samples in 4 groups as high/low for GATA4 and GATA6. Reduced expression of GATA4 had a minor transcriptional impact but low expression of GATA4 enhanced the effects of GATA6 low expression. GATA4 and GATA6 display a partially overlapping genome-wide distribution, mainly at promoters. Reduced expression of both proteins in tumours was associated with the worst patient survival. GATA4 and GATA6 expression significantly decreased in metastases and negatively correlated with basal markers. CONCLUSIONS: GATA4 and GATA6 cooperate to maintain the classical phenotype. Our findings provide compelling rationale to assess their expression as biomarkers of poor prognosis and therapeutic response.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Pâncreas/patologia , Carcinoma Ductal Pancreático/patologia , Perfilação da Expressão Gênica , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo
5.
Cancers (Basel) ; 12(9)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911761

RESUMO

The Wnt signaling pathway is an important cellular mechanism for regulating differentiation processes as well as cell cycle events, and different inhibitors of this pathway, for example, PRI-724, are showing promising results in clinical trials for treatment of advanced pancreatic adenocarcinoma or ovarian cancer. Growing evidence suggests that Wnt signaling may also be crucial for tumorigenesis and progression of soft tissue sarcomas (STS), a malignant neoplasm with few therapeutic options at an advanced state. Our study with several STS cell lines and primary cultures shows that inhibition of Wnt/ß-catenin signaling with PRI-724 is able to suppress cell viability/proliferation and to increase cell death rates. TCF/ß-catenin-mediated transcriptional activity is decreased in treated cells, leading to downregulation of its target genes CCND1 and CDC25A. The latter was critical because its downregulation via siRNA was able to mimic the effect of PRI-724 on cell cycle arrest and cell death induction. An evaluation of NCBI/GenBank data confirmed that CDC25A mRNA is elevated in STS patients. Importantly, PRI-724 in combination with standard STS chemotherapeutics doxorubicin or trabectedin enhanced their antitumoral effect in a synergistic manner according to isobolographic analysis, suggesting that Wnt inhibition through PRI-724 could be a beneficial combination regime in patients with advanced STS.

6.
Oncogene ; 39(25): 4884-4895, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32451433

RESUMO

Chromatin remodeling factors contribute to establish aberrant gene expression programs in cancer cells and therefore represent valuable targets for therapeutic intervention. BPTF (Bromodomain PhD Transcription Factor), a core subunit of the nucleosome remodeling factor (NURF), modulates c-MYC oncogenic activity in pancreatic cancer. Here, we analyze the role of BPTF in c-MYC-driven B-cell lymphomagenesis using the Eµ-Myc transgenic mouse model of aggressive B-cell lymphoma. We find that BPTF is required for normal B-cell differentiation without evidence of haploinsufficiency. In contrast, deletion of one Bptf allele is sufficient to delay lymphomagenesis in Eµ-Myc mice. Tumors arising in a Bptf heterozygous background display decreased c-MYC levels and pathway activity, together with increased activation of the NF-κB pathway, a molecular signature characteristic of human diffuse large B-cell lymphoma (DLBCL). In human B-cell lymphoma samples, we find a strong correlation between BPTF and c-MYC mRNA and protein levels, together with an anti-correlation between BPTF and NF-κB pathway activity. Our results indicate that BPTF is a relevant therapeutic target in B-cell lymphomas and that, upon its inhibition, cells acquire distinct oncogenic dependencies.


Assuntos
Antígenos Nucleares/genética , Linfoma de Células B/genética , Proteínas do Tecido Nervoso/genética , Vício Oncogênico/genética , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/genética , Animais , Antígenos Nucleares/metabolismo , Linfócitos B/metabolismo , Carcinogênese/genética , Montagem e Desmontagem da Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Linfoma de Células B/metabolismo , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
7.
Elife ; 82019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31498079

RESUMO

Genes can encode multiple isoforms, broadening their functions and providing a molecular substrate to evolve phenotypic diversity. Evolution of isoform function is a potential route to adapt to new environments. Here we show that de novo, beneficial alleles in the nurf-1 gene became fixed in two laboratory lineages of C. elegans after isolation from the wild in 1951, before methods of cryopreservation were developed. nurf-1 encodes an ortholog of BPTF, a large (>300 kD) multidomain subunit of the NURF chromatin remodeling complex. Using CRISPR-Cas9 genome editing and transgenic rescue, we demonstrate that in C. elegans, nurf-1 has split into two, largely non-overlapping isoforms (NURF-1.D and NURF-1.B, which we call Yin and Yang, respectively) that share only two of 26 exons. Both isoforms are essential for normal gametogenesis but have opposite effects on male/female gamete differentiation. Reproduction in hermaphrodites, which involves production of both sperm and oocytes, requires a balance of these opposing Yin and Yang isoforms. Transgenic rescue and genetic position of the fixed mutations suggest that different isoforms are modified in each laboratory strain. In a related clade of Caenorhabditis nematodes, the shared exons have duplicated, resulting in the split of the Yin and Yang isoforms into separate genes, each containing approximately 200 amino acids of duplicated sequence that has undergone accelerated protein evolution following the duplication. Associated with this duplication event is the loss of two additional nurf-1 transcripts, including the long-form transcript and a newly identified, highly expressed transcript encoded by the duplicated exons. We propose these lost transcripts are non-functional side products necessary to transcribe the Yin and Yang transcripts in the same cells. Our work demonstrates how gene sharing, through the production of multiple isoforms, can precede the creation of new, independent genes.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Cromossômicas não Histona/genética , Evolução Molecular , Isoformas de Proteínas/genética , Animais , Caenorhabditis elegans/fisiologia , Montagem e Desmontagem da Cromatina , Feminino , Gametogênese , Masculino
8.
Nature ; 554(7693): 533-537, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29443959

RESUMO

Chronic inflammation increases the risk of developing one of several types of cancer. Inflammatory responses are currently thought to be controlled by mechanisms that rely on transcriptional networks that are distinct from those involved in cell differentiation. The orphan nuclear receptor NR5A2 participates in a wide variety of processes, including cholesterol and glucose metabolism in the liver, resolution of endoplasmic reticulum stress, intestinal glucocorticoid production, pancreatic development and acinar differentiation. In genome-wide association studies, single nucleotide polymorphisms in the vicinity of NR5A2 have previously been associated with the risk of pancreatic adenocarcinoma. In mice, Nr5a2 heterozygosity sensitizes the pancreas to damage, impairs regeneration and cooperates with mutant Kras in tumour progression. Here, using a global transcriptomic analysis, we describe an epithelial-cell-autonomous basal pre-inflammatory state in the pancreas of Nr5a2+/- mice that is reminiscent of the early stages of pancreatitis-induced inflammation and is conserved in histologically normal human pancreases with reduced expression of NR5A2 mRNA. In Nr5a2+/-mice, NR5A2 undergoes a marked transcriptional switch, relocating from differentiation-specific to inflammatory genes and thereby promoting gene transcription that is dependent on the AP-1 transcription factor. Pancreatic deletion of Jun rescues the pre-inflammatory phenotype, as well as binding of NR5A2 to inflammatory gene promoters and the defective regenerative response to damage. These findings support the notion that, in the pancreas, the transcriptional networks involved in differentiation-specific functions also suppress inflammatory programmes. Under conditions of genetic or environmental constraint, these networks can be subverted to foster inflammation.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica , Inflamação/genética , Pâncreas/metabolismo , Pâncreas/patologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Transcriptoma , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Cromatina/genética , Cromatina/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Redes Reguladoras de Genes/genética , Genes jun/genética , Heterozigoto , Humanos , Camundongos , Especificidade de Órgãos/genética , Pancreatite/genética , Regiões Promotoras Genéticas/genética , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...