Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36821088

RESUMO

The integrity of ER-mitochondria appositions ensures transfer of ions and phospholipids (PLs) between these organelles and exerts crucial effects on mitochondrial bioenergetics. Malfunctions within the ER-mitochondria contacts altering lipid trafficking homeostasis manifest in diverse pathologies, but the molecular effectors governing this process remain ill-defined. Here, we report that PERK promotes lipid trafficking at the ER-mitochondria contact sites (EMCS) through a non-conventional, unfolded protein response-independent, mechanism. PERK operates as an adaptor for the recruitment of the ER-plasma membrane tether and lipid transfer protein (LTP) Extended-Synaptotagmin 1 (E-Syt1), within the EMCS. In resting cells, the heterotypic E-Syt1-PERK interaction endorses transfer of PLs between the ER and mitochondria. Weakening the E-Syt1-PERK interaction or removing the lipid transfer SMP-domain of E-Syt1, compromises mitochondrial respiration. Our findings unravel E-Syt1 as a PERK interacting LTP and molecular component of the lipid trafficking machinery of the EMCS, which critically maintains mitochondrial homeostasis and fitness.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Fosfolipídeos , Sinaptotagmina I , eIF-2 Quinase , Humanos , Transporte Biológico , eIF-2 Quinase/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Sinaptotagmina I/metabolismo , Membranas Mitocondriais/metabolismo
2.
Front Cell Dev Biol ; 10: 988014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158205

RESUMO

Membrane contact sites (MCS) between organelles of eukaryotic cells provide structural integrity and promote organelle homeostasis by facilitating intracellular signaling, exchange of ions, metabolites and lipids and membrane dynamics. Cataloguing MCS revolutionized our understanding of the structural organization of a eukaryotic cell, but the functional role of MSCs and their role in complex diseases, such as cancer, are only gradually emerging. In particular, the endoplasmic reticulum (ER)-mitochondria contacts (EMCS) are key effectors of non-vesicular lipid trafficking, thereby regulating the lipid composition of cellular membranes and organelles, their physiological functions and lipid-mediated signaling pathways both in physiological and diseased conditions. In this short review, we discuss key aspects of the functional complexity of EMCS in mammalian cells, with particular emphasis on their role as central hubs for lipid transport between these organelles and how perturbations of these pathways may favor key traits of cancer cells.

3.
Signal Transduct Target Ther ; 5(1): 195, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32963243

RESUMO

Sarcomas constitute a rare heterogeneous group of tumors, including a wide variety of histological subtypes. Despite advances in our understanding of the pathophysiology of the disease, first-line sarcoma treatment options are still limited and new treatment approaches are needed. Histone H2AX phosphorylation is a sensitive marker for double strand breaks and has recently emerged as biomarker of DNA damage for new drug development. In this study, we explored the role of H2AX phosphorylation at Ser139 alone or in combination with MAP17 protein, an inducer of DNA damage through ROS increase, as prognostic biomarkers in sarcoma tumors. Next, we proposed doxorubicin and olaparib combination as potential therapeutic strategies against sarcomas displaying high level of both markers. We evaluate retrospectively the levels of pH2AX (Ser139) and MAP17 in a cohort of 69 patients with different sarcoma types and its relationship with clinical and pathological features. We found that the levels of pH2AX and MAP17 were related to clinical features and poor survival. Next, we pursued PARP1 inhibition with olaparib to potentiate the antitumor effect of DNA damaging effect of the DNA damaging agent doxorubicin to achieve an optimal synergy in sarcoma. We demonstrated that the combination of olaparib and doxorubicin was synergistic in vitro, inhibiting cell proliferation and enhancing pH2AX intranuclear accumulation, as a result of DNA damage. The synergism was corroborated in patient-derived xenografts (PDX) where the combination was effective in tumors with high levels of pH2AX and MAP17, suggesting that both biomarkers might potentially identify patients who better benefit from this combined therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/metabolismo , Histonas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Sarcoma , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Ftalazinas/farmacologia , Piperazinas/farmacologia , Prognóstico , Sarcoma/classificação , Sarcoma/diagnóstico , Sarcoma/tratamento farmacológico , Sarcoma/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancers (Basel) ; 12(1)2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968688

RESUMO

The MYB binding protein 1A (MYBBP1A, also known as p160) acts as a co-repressor of multiple transcription factors involved in many physiological processes. Therefore, MYBBP1A acts as a tumor suppressor in multiple aspects related to cell physiology, most of them very relevant for tumorigenesis. We explored the different roles of MYBBP1A in different aspects of cancer, such as mitosis, cellular senescence, epigenetic regulation, cell cycle, metabolism plasticity and stemness. We especially reviewed the relationships between MYBBP1A, the inhibitory role it plays by binding and inactivating c-MYB and its regulation of PGC-1α, leading to an increase in the stemness and the tumor stem cell population. In addition, MYBBP1A causes the activation of PGC-1α directly and indirectly through c-MYB, inducing the metabolic change from glycolysis to oxidative phosphorylation (OXPHOS). Therefore, the combination of these two effects caused by the decreased expression of MYBBP1A provides a selective advantage to tumor cells. Interestingly, this only occurs in cells lacking pVHL. Finally, the loss of MYBBP1A occurs in 8%-9% of renal tumors. tumors, and this subpopulation could be studied as a possible target of therapies using inhibitors of mitochondrial respiration.

5.
Mol Cancer ; 19(1): 7, 2020 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-31926547

RESUMO

BACKGROUND: Ovarian cancer is one of the most common and malignant cancers, partly due to its late diagnosis and high recurrence. Chemotherapy resistance has been linked to poor prognosis and is believed to be linked to the cancer stem cell (CSC) pool. Therefore, elucidating the molecular mechanisms mediating therapy resistance is essential to finding new targets for therapy-resistant tumors. METHODS: shRNA depletion of MYPT1 in ovarian cancer cell lines, miRNA overexpression, RT-qPCR analysis, patient tumor samples, cell line- and tumorsphere-derived xenografts, in vitro and in vivo treatments, analysis of data from ovarian tumors in public transcriptomic patient databases and in-house patient cohorts. RESULTS: We show that MYPT1 (PPP1R12A), encoding myosin phosphatase target subunit 1, is downregulated in ovarian tumors, leading to reduced survival and increased tumorigenesis, as well as resistance to platinum-based therapy. Similarly, overexpression of miR-30b targeting MYPT1 results in enhanced CSC-like properties in ovarian tumor cells and is connected to the activation of the Hippo pathway. Inhibition of the Hippo pathway transcriptional co-activator YAP suppresses the resistance to platinum-based therapy induced by either low MYPT1 expression or miR-30b overexpression, both in vitro and in vivo. CONCLUSIONS: Our work provides a functional link between the resistance to chemotherapy in ovarian tumors and the increase in the CSC pool that results from the activation of the Hippo pathway target genes upon MYPT1 downregulation. Combination therapy with cisplatin and YAP inhibitors suppresses MYPT1-induced resistance, demonstrating the possibility of using this treatment in patients with low MYPT1 expression, who are likely to be resistant to platinum-based therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Prognóstico , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Exp Clin Cancer Res ; 38(1): 234, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31159852

RESUMO

BACKGROUND: Ovarian cancer is the leading cause of gynecologic cancer-related death, due in part to a late diagnosis and a high rate of recurrence. Primary and acquired platinum resistance is related to a low response probability to subsequent lines of treatment and to a poor survival. Therefore, a comprehensive understanding of the mechanisms that drive platinum resistance is urgently needed. METHODS: We used bioinformatics analysis of public databases and RT-qPCR to quantitate the relative gene expression profiles of ovarian tumors. Many of the dysregulated genes were cancer stem cell (CSC) factors, and we analyzed its relation to therapeutic resistance in human primary tumors. We also performed clustering and in vitro analyses of therapy cytotoxicity in tumorspheres. RESULTS: Using bioinformatics analysis, we identified transcriptional targets that are common endpoints of genetic alterations linked to platinum resistance in ovarian tumors. Most of these genes are grouped into 4 main clusters related to the CSC phenotype, including the DNA damage, Notch and C-KIT/MAPK/MEK pathways. The relative expression of these genes, either alone or in combination, is related to prognosis and provide a connection between platinum resistance and the CSC phenotype. However, the expression of the CSC-related markers was heterogeneous in the resistant tumors, most likely because there were different CSC pools. Furthermore, our in vitro results showed that the inhibition of the CSC-related targets lying at the intersection of the DNA damage, Notch and C-KIT/MAPK/MEK pathways sensitize CSC-enriched tumorspheres to platinum therapies, suggesting a new option for the treatment of patients with platinum-resistant ovarian cancer. CONCLUSIONS: The current study presents a new approach to target the physiology of resistant ovarian tumor cells through the identification of core biomarkers. We hypothesize that the identified mutations confer platinum resistance by converging to activate a few pathways and to induce the expression of a few common, measurable and targetable essential genes. These pathways include the DNA damage, Notch and C-KIT/MAPK/MEK pathways. Finally, the combined inhibition of one of these pathways with platinum treatment increases the sensitivity of CSC-enriched tumorspheres to low doses of platinum, suggesting a new treatment for ovarian cancer.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais , Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/genética , Platina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Tomada de Decisão Clínica , Gerenciamento Clínico , Feminino , Humanos , Estimativa de Kaplan-Meier , Técnicas de Diagnóstico Molecular , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/mortalidade , Prognóstico , Modelos de Riscos Proporcionais , Resultado do Tratamento
7.
Mol Oncol ; 13(7): 1519-1533, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31066170

RESUMO

The tumor microenvironment may alter the original tumorigenic potential of tumor cells. Under harsh environmental conditions, genetic alterations conferring selective advantages may initiate the growth of tumor subclones, providing new opportunities for these tumors to grow. We performed a genetic loss-of-function screen to identify genetic alterations able to promote tumor cell growth in the absence of glucose. We identified that downregulation of MYBBP1A increases tumorigenic properties under nonpermissive conditions. MYBBP1A downregulation simultaneously activates PGC1α, directly by alleviating direct repression and indirectly by increasing PGC1α mRNA levels through c-MYB, leading to a metabolic switch from glycolysis to OXPHOS and increased tumorigenesis in low-glucose microenvironments. We have also identified reduced MYBBP1A expression in human renal tumor samples, which show high expression levels of genes involved in oxidative metabolism. In summary, our data support the role of MYBBP1A as a tumor suppressor by regulating c-MYB and PGC1α. Therefore, loss of MYBBP1A increases adaptability spanning of tumors through metabolic switch.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Regulação para Baixo , Feminino , Glucose/metabolismo , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos , Camundongos Nus , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
8.
Cells ; 8(5)2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121959

RESUMO

:In the past years, we have learnt that tumors co-evolve with their microenvironment, and that the active interaction between cancer cells and stromal cells plays a pivotal role in cancer initiation, progression and treatment response. Among the players involved, the pathways regulating mitochondrial functions have been shown to be crucial for both cancer and stromal cells. This is perhaps not surprising, considering that mitochondria in both cancerous and non-cancerous cells are decisive for vital metabolic and bioenergetic functions and to elicit cell death. The central part played by mitochondria also implies the existence of stringent mitochondrial quality control mechanisms, where a specialized autophagy pathway (mitophagy) ensures the selective removal of damaged or dysfunctional mitochondria. Although the molecular underpinnings of mitophagy regulation in mammalian cells remain incomplete, it is becoming clear that mitophagy pathways are intricately linked to the metabolic rewiring of cancer cells to support the high bioenergetic demand of the tumor. In this review, after a brief introduction of the main mitophagy regulators operating in mammalian cells, we discuss emerging cell autonomous roles of mitochondria quality control in cancer onset and progression. We also discuss the relevance of mitophagy in the cellular crosstalk with the tumor microenvironment and in anti-cancer therapy responses.


Assuntos
Mitocôndrias/metabolismo , Mitofagia , Neoplasias/patologia , Adaptação Fisiológica , Animais , Autofagia , Linhagem Celular Tumoral , Humanos , Camundongos , Microambiente Tumoral
9.
Cancers (Basel) ; 11(2)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781655

RESUMO

Tumors are cellular ecosystems where different populations and subpopulations of cells coexist. Among these cells, cancer stem cells (CSCs) are considered to be the origin of the tumor mass, being involved in metastasis and in the resistance to conventional therapies. Furthermore, tumor cells have an enormous plasticity and a phenomenon of de-differentiation of mature tumor cells to CSCs may occur. Therefore, it is essential to identify genetic alterations that cause the de-differentiation of mature tumor cells to CSCs for the future design of therapeutic strategies. In this study, we characterized the role of MYBBP1A by experiments in cell lines, xenografts and human tumor samples. We have found that MYBBP1A downregulation increases c-MYB (Avian myeloblastosis viral oncogene homolog) activity, leading to a rise in the stem-like cell population. We identified that the downregulation of MYBBP1A increases tumorigenic properties, in vitro and in vivo, in renal carcinoma cell lines that express high levels of c-MYB exclusively. Moreover, in a cohort of renal tumors, MYBBP1A is downregulated or lost in a significant percentage of tumors correlating with poor patient prognosis and a metastatic tendency. Our data support the role of MYBBP1A as a tumor suppressor by repressing c-MYB, acting as an important regulator of the plasticity of tumor cells.

10.
Oncotarget ; 9(68): 32958-32971, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30250642

RESUMO

Rectal cancer represents approximately 10% of cancers worldwide. Preoperative chemoradiotherapy increases complete pathologic response and local control, although it offers a poor advantage in survivorship and sphincter saving compared with that of radiotherapy alone. After preoperative chemoradiotherapy, approximately 20% of patients with rectal cancer achieve a pathologic complete response to the removed surgical specimen; this response may be related to a better prognosis and an improvement in disease-free survival. However, better biomarkers to predict response and new targets are needed to stratify patients and obtain better response rates. MAP17 (PDZK1IP1) is a small, 17 kDa non-glycosylated membrane protein located in the plasma membrane and Golgi apparatus and is overexpressed in a wide variety of human carcinomas. MAP17 has been proposed as a predictive biomarker for reactive oxygen species, ROS, inducing treatments in cervical tumors or laryngeal carcinoma. Due to the increase in ROS, MAP17 is also associated with the marker of DNA damage, phosphoH2AX (pH2AX). In the present manuscript, we examined the values of MAP17 and pH2AX as surrogate biomarkers of the response in rectal tumors. MAP17 expression after preoperative chemoradiotherapy is able to predict the response to chemoradiotherapy, similar to the increase in pH2AX. Furthermore, we explored whether we can identify molecular targeted therapies that could help improve the response of these tumors to radiotherapy. In this sense, we found that the inhibition of DNA damage with olaparib increased the response to radio- and chemotherapy, specifically in tumors with high levels of pH2AX and MAP17.

11.
J Biol Chem ; 293(41): 15947-15961, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30158244

RESUMO

Increased glucose consumption distinguishes cancer cells from normal cells and is known as the "Warburg effect" because of increased glycolysis. Lactate dehydrogenase A (LDHA) is a key glycolytic enzyme, a hallmark of aggressive cancers, and believed to be the major enzyme responsible for pyruvate-to-lactate conversion. To elucidate its role in tumor growth, we disrupted both the LDHA and LDHB genes in two cancer cell lines (human colon adenocarcinoma and murine melanoma cells). Surprisingly, neither LDHA nor LDHB knockout strongly reduced lactate secretion. In contrast, double knockout (LDHA/B-DKO) fully suppressed LDH activity and lactate secretion. Furthermore, under normoxia, LDHA/B-DKO cells survived the genetic block by shifting their metabolism to oxidative phosphorylation (OXPHOS), entailing a 2-fold reduction in proliferation rates in vitro and in vivo compared with their WT counterparts. Under hypoxia (1% oxygen), however, LDHA/B suppression completely abolished in vitro growth, consistent with the reliance on OXPHOS. Interestingly, activation of the respiratory capacity operated by the LDHA/B-DKO genetic block as well as the resilient growth were not consequences of long-term adaptation. They could be reproduced pharmacologically by treating WT cells with an LDHA/B-specific inhibitor (GNE-140). These findings demonstrate that the Warburg effect is not only based on high LDHA expression, as both LDHA and LDHB need to be deleted to suppress fermentative glycolysis. Finally, we demonstrate that the Warburg effect is dispensable even in aggressive tumors and that the metabolic shift to OXPHOS caused by LDHA/B genetic disruptions is responsible for the tumors' escape and growth.


Assuntos
L-Lactato Desidrogenase/genética , Adenocarcinoma , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Inativação de Genes , Glicólise , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5 , Melanoma , Camundongos , Fosforilação Oxidativa , Piridonas/farmacologia , Tiofenos/farmacologia
12.
Oncotarget ; 8(62): 105196-105210, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29285244

RESUMO

The scaffold protein Spinophilin (Spinophilin, PPP1R9B) is one of the regulatory subunits of phosphatase-1 (PP1), directing it to distinct subcellular locations and targets. The loss of Spinophilin reduces PP1 targeting to pRb, thereby maintaining higher levels of phosphorylated pRb. Spinophilin is absent or reduced in approximately 40% of human lung tumors, correlating with the malignant grade. However, little is known about the relevance of the coordinated activity or presence of Spinophilin and its reported catalytic partners in the prognosis of lung cancer. In the present work, we show that the downregulation of Spinophilin, either by protein or mRNA, is related to a worse prognosis in lung tumors. This effect is more relevant in squamous cell carcinoma, SCC, than in adenocarcinoma. Downregulation of Spinophilin is related to a decrease in the levels of its partners PPP1CA/B/C, the catalytic subunits of PP1. A decrease in these subunits is also related to prognosis in SCC and, in combination with a decrease in Spinophilin, are markers of a poor prognosis in these tumors. The analysis of the genes that correlate to Spinophilin in lung tumors showed clear enrichment in ATP biosynthesis and protein degradation GO pathways. The analysis of the response to several common and pathway-related drugs indicates a direct correlation between the Spinophilin/PPP1Cs ratio and the response to oxaliplatin and bortezomib. This finding indicates that this ratio may be a good predictive biomarker for the activity of the drugs in these tumors with a poor prognosis.

13.
Clin Cancer Res ; 19(14): 3925-35, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23729363

RESUMO

PURPOSE: The genomic region 17q21 is frequently associated with microsatellite instability and LOH in cancer, including gastric and colorectal carcinomas. This region contains several putative tumor suppressor genes, including Brca1, NM23, prohibitin, and spinophilin (Spn, PPP1R9B, neurabin II). The scaffold protein Spn is one of the regulatory subunits of phosphatase-1 (PP1) that targets PP1 to distinct subcellular locations and couples PP1 to its target. Thus, Spn may alter cell-cycle progression via the regulation of the phosphorylation status of the retinoblastoma protein, a direct target of PP1. Therefore, we analyzed whether Spn levels were reduced in colorectal carcinomas and whether Spn levels correlated with prognosis or response to therapy. EXPERIMENTAL DESIGN: By means of immunohistochemistry or quantitative PCR, we studied the levels of Spn in stages II, III, and IV colorectal carcinoma tumors and correlated to other clinicopathologic features as well as prognosis or response to therapy. RESULTS: Spn was lost in a percentage of human gastric, small intestine, and colorectal carcinomas. In patients with colorectal carcinoma, tumoral Spn downregulation correlated with a more aggressive histologic phenotype (poorer tumor differentiation and higher proliferative Ki67 index). Consistent with this observation, lower Spn protein expression levels were associated with faster relapse and poorer survival in patients with stage III colorectal carcinoma, particularly among those receiving adjuvant fluoropyrimidine therapy. We validated this result in an independent cohort of patients with metastatic colorectal carcinoma treated with standard chemotherapy. Although patients that achieved an objective tumor response exhibited Spn levels similar to nontumoral tissue, nonresponding patients showed a significant reduction in Spn mRNA levels. CONCLUSIONS: Our data suggest that Spn downregulation contributes to a more aggressive biologic behavior, induces chemoresistance, and is associated with a poorer survival in patients with advanced stages of colorectal carcinoma.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias do Colo/metabolismo , Expressão Gênica , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Idoso , Neoplasias do Colo/mortalidade , Neoplasias do Colo/patologia , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Proteínas dos Microfilamentos/genética , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Proteínas do Tecido Nervoso/genética , Prognóstico
14.
PLoS One ; 8(2): e56169, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23418532

RESUMO

MAP17 is a membrane-associated protein that is overexpressed in human tumors. Because the expression of MAP17 increases reactive oxygen species (ROS) generation through SGLT1 in cancer cells, in the present work, we investigated whether MAP17 and/or SGLT1 might be markers for the activity of treatments involving oxidative stress, such as cisplatin or radiotherapy. First, we confirmed transcriptional alterations in genes involved in the oxidative stress induced by MAP17 expression in HeLa cervical tumor cells and found that Hela cells expressing MAP17 were more sensitive to therapies that induce ROS than were parental cells. Furthermore, MAP17 increased glucose uptake through SGLT receptors. We then analyzed MAP17 and SGLT1 expression levels in cervical tumors treated with cisplatin plus radiotherapy and correlated the expression levels with patient survival. MAP17 and SGLT1 were expressed in approximately 70% and 50% of cervical tumors of different types, respectively, but they were not expressed in adenoma tumors. Furthermore, there was a significant correlation between MAP17 and SGLT1 expression levels. High levels of either MAP17 or SGLT1 correlated with improved patient survival after treatment. However, the patients with high levels of both MAP17 and SGLT1 survived through the end of this study. Therefore, the combination of high MAP17 and SGLT1 levels is a marker for good prognosis in patients with cervical tumors after cisplatin plus radiotherapy treatment. These results also suggest that the use of MAP17 and SGLT1 markers may identify patients who are likely to exhibit a better response to treatments that boost oxidative stress in other cancer types.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Membrana/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Neoplasias do Colo do Útero/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/administração & dosagem , Biomarcadores Tumorais/genética , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Quimiorradioterapia , Cisplatino/administração & dosagem , Feminino , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Glucose/farmacocinética , Células HeLa , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transportador 1 de Glucose-Sódio/genética , Resultado do Tratamento , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...