Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 91(2): 359-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25443444

RESUMO

The effect of ultraviolet (UV) radiation and copper (Cu) on apical segments of Pterocladiella capillacea was examined under two different conditions of radiation, PAR (control) and PAR+UVA+UVB (PAR+UVAB), and three copper concentrations, ranging from 0 (control) to 0.62, 1.25 and 2.50 µm. Algae were exposed in vitro to photosynthetically active radiation (PAR) at 70 µmol photons m(-2)  s(-1) , PAR + UVB at 0.35 W m(-2) and PAR +UVA at 0.70 W m(-2) during a 12-h photocycle for 3 h each day for 7 days. The effects of radiation and copper on growth rates, content of photosynthetic pigments and photosynthetic performance were analyzed. In addition, samples were processed for light and transmission electron microscopy. The content of photosynthetic pigments decreased after exposure to radiation and Cu. Compared with PAR radiation and copper treatments modified the kinetics patterns of the photosynthesis/irradiance curve. The treatments also caused changes in the ultrastructure of cortical and subcortical cells, including increased cell wall thickness and accumulation of plastoglobuli, as well as changes in the organization of chloroplasts. The results indicate that the synergistic interaction between UV radiation and Cu in P. capillacea, led to the failure of protective mechanisms and causing more drastic changes and cellular imbalances.


Assuntos
Parede Celular/efeitos da radiação , Cloroplastos/efeitos da radiação , Cobre/toxicidade , Fótons , Fotossíntese/efeitos da radiação , Rodófitas/efeitos da radiação , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Clorofila/biossíntese , Clorofila A , Cloroplastos/efeitos dos fármacos , Cloroplastos/fisiologia , Cloroplastos/ultraestrutura , Microscopia Eletrônica de Transmissão , Fotoperíodo , Fotossíntese/efeitos dos fármacos , Fotossíntese/fisiologia , Ficobiliproteínas/biossíntese , Pigmentos Biológicos/biossíntese , Rodófitas/efeitos dos fármacos , Rodófitas/fisiologia , Rodófitas/ultraestrutura , Raios Ultravioleta
2.
Photochem Photobiol ; 90(5): 1050-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24893751

RESUMO

This study investigated the effects of radiation (PAR+UVA+UVB) on the development and growth rates (GRs) of young gametophytes of Gelidium floridanum. In addition, photosynthetic pigments were quantified, carotenoids identified, and photosynthetic performance assessed. Over a period of 3 days, young gametophytes were cultivated under laboratory conditions and exposed to photosynthetically active radiation (PAR) at 80 µmol photons m(-2) s(-1) and PAR+UVA (0.70 W m(-2))+UVB (0.35 W m(-2)) for 3 h per day. The samples were processed for light and electron microscopy to analyze the ultrastructure features, as well as carry out metabolic studies of GRs, quantify the content of photosynthetic pigments, identify carotenoids and assess photosynthetic performance. PAR+UVA+UVB promoted increase in cell wall thickness, accumulation of floridean starch grains in the cytoplasm and disruption of chloroplast internal organization. Algae exposed to PAR+UVA+UVB also showed a reduction in GR of 97%. Photosynthetic pigments, in particular, phycoerythrin and allophycocyanin contents, decreased significantly from UV radiation exposure. This result agrees with the decrease in photosynthetic performance observed after exposure to ultraviolet radiation, as measured by a decrease in the electron transport rate (ETR), where values of ETRmax declined approximately 44.71%. It can be concluded that radiation is a factor that affects the young gametophytes of G. floridanum at this stage of development.


Assuntos
Elétrons , Gametogênese Vegetal/efeitos da radiação , Fotossíntese/efeitos da radiação , Rodófitas/efeitos da radiação , Carotenoides/biossíntese , Parede Celular/efeitos da radiação , Parede Celular/ultraestrutura , Clorofila/biossíntese , Transporte de Elétrons/efeitos da radiação , Gametogênese Vegetal/fisiologia , Microscopia Eletrônica , Fotossíntese/fisiologia , Ficocianina/antagonistas & inibidores , Ficocianina/biossíntese , Ficoeritrina/antagonistas & inibidores , Ficoeritrina/biossíntese , Rodófitas/crescimento & desenvolvimento , Rodófitas/metabolismo , Rodófitas/ultraestrutura , Raios Ultravioleta
3.
Photochem Photobiol ; 90(3): 560-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24329523

RESUMO

The photoacclimation responses of the brown macroalga Sargassum cymosum were studied to determine its cytochemical and ultrastructural organization, as well as photosynthetic pigments and performance. S. cymosum was cultivated in three salinities (30, 35 and 40 psu) under four irradiation treatments: PAR-only, PAR + UVA, PAR + UVB and PAR + UVA + UVB. Plants were exposed to PAR at 70 µmol photons m(-2) s(-1), PAR + UVB at 0.35 W m(-2) and PAR +UVA at 0.70 W m(-2) for 3 h per day during 7 days in vitro. Growth rate was not significantly affected by any type of radiation or salinity. The amount of pigments in S. cymosum was significantly influenced by the interaction of salinity and radiation treatments. Compared with PAR-only, UVR treatments modified the kinetics patterns of the photosynthesis/irradiance curve. After exposure to UVR, S. cymosum increased cell wall thickness and the presence of phenolic compounds. The number of mitochondria increased, whereas the number of chloroplasts showed few changes. Although S. cymosum showed insensitivity to changes in salinity, it can be concluded that samples treated under four irradiation regimes showed structural changes, which were more evident, but not severe, under PAR + UVB treatment.


Assuntos
Adaptação Fisiológica , Phaeophyceae/fisiologia , Fotossíntese , Salinidade , Raios Ultravioleta , Transporte de Elétrons , Biologia Marinha , Microscopia Eletrônica de Transmissão , Phaeophyceae/efeitos da radiação , Phaeophyceae/ultraestrutura , Pigmentos Biológicos/metabolismo
4.
Protoplasma ; 250(6): 1303-13, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23708376

RESUMO

Ultraviolet-B radiation (UVBR) affects plants in many important ways, including reduction of growth rate and primary productivity, and changes in ultrastructures. Rice (Oryza sativa) is one of the most cultivated cereals in the world, along with corn and wheat, representing over 50% of agricultural production. In this study, we examined O. sativa plants exposed to ambient outdoor radiation and laboratory-controlled photosynthetically active radiation (PAR) and PAR + UVBR conditions for 2 h/day during 30 days of cultivation. The samples were studied for morphological and ultrastructural characteristics, and physiological parameters. PAR + UVBR caused changes in the ultrastructure of leaf of O. sativa and leaf morphology (leaf index, leaf area and specific leaf area, trichomes, and papillae), plant biomass (dry and fresh weight), photosynthetic pigments, phenolic compounds, and protein content. As a photoprotective acclimation strategy against PAR + UVBR damage, an increase of 66.24% in phenolic compounds was observed. Furthermore, PAR + UVBR treatment altering the levels of chlorophylls a and b, and total chlorophyll. In addition, total carotenoid contents decreased after PAR + UVBR treatment. The results strongly suggested that PAR + UVBR negatively affects the ultrastructure, morphology, photosynthetic pigments, and growth rates of leaf of O. sativa and, in the long term, it could affect the viability of this economically important plant.


Assuntos
Oryza/fisiologia , Oryza/ultraestrutura , Raios Ultravioleta , Oryza/efeitos da radiação , Fotossíntese/efeitos da radiação , Pigmentos Biológicos/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos da radiação , Epiderme Vegetal/ultraestrutura , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Polifenóis/metabolismo , Solubilidade
5.
Microsc Microanal ; 19(3): 513-24, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23551883

RESUMO

The effect of lead and copper on apical segments of Gracilaria domingensis was examined. Over a period of 7 days, the segments were cultivated with concentrations of 5 and 10 ppm under laboratory conditions. The samples were processed for light, confocal, and electron microscopy, as well as histochemistry, to evaluate growth rates, mitochondrial activity, protein levels, chlorophyll a, phycobiliproteins, and carotenoids. After 7 days of exposure to lead and copper, growth rates were slower than control, and biomass loss was observed on copper-treated plants. Ultrastructural damage was primarily observed in the internal organization of chloroplasts and cell wall thickness. X-ray microanalysis detected lead in the cell wall, while copper was detected in both the cytoplasm and cell wall. Moreover, lead and copper exposure led to photodamage of photosynthetic pigments and, consequently, changes in photosynthesis. However, protein content and glutathione reductase activity decreased only in the copper treatments. In both treatments, decreased mitochondrial NADH dehydrogenase activity was observed. Taken together, the present study demonstrates that (1) heavy metals such as lead and copper negatively affect various morphological, physiological, and biochemical processes in G. domingensis and (2) copper is more toxic than lead in G. domingensis.


Assuntos
Cobre/toxicidade , Gracilaria/efeitos dos fármacos , Chumbo/toxicidade , Biomassa , Carotenoides/análise , Parede Celular/química , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Clorofila/análise , Clorofila A , Cloroplastos/efeitos dos fármacos , Cloroplastos/ultraestrutura , Cobre/análise , Citoplasma/química , Microanálise por Sonda Eletrônica , Gracilaria/crescimento & desenvolvimento , Gracilaria/metabolismo , Gracilaria/ultraestrutura , Chumbo/análise , Microscopia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , NADH Desidrogenase/metabolismo , Fotossíntese/efeitos dos fármacos , Ficobiliproteínas/análise
6.
Microsc Microanal ; 18(6): 1467-79, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23153514

RESUMO

We undertook a study of Porphyra acanthophora var. brasiliensis to determine its responses under ambient conditions, photosynthetically active radiation (PAR), and PAR+UVBR (ultraviolet radiation-B) treatment, focusing on changes in ultrastructure, and cytochemistry. Accordingly, control ambient samples were collected in the field, and two different treatments were performed in the laboratory. Plants were exposed to PAR at 60 µmol photons m-2 s-1 and PAR + UVBR at 0.35 W m-2 for 3 h per day during 21 days of in vitro cultivation. Confocal laser scanning microscopy analysis of the vegetative cells showed single stellate chloroplast in ambient and PAR samples, but in PAR+UVBR-exposed plants, the chloroplast showed alterations in the number and form of arms. Under PAR+UVBR treatment, the thylakoids of the chloroplasts were disrupted, and an increase in the number of plastoglobuli was observed, in addition to mitochondria, which appeared with irregular, disrupted morphology compared to ambient and PAR samples. After UVBR exposure, the formation of carpospores was also observed. Plants under ambient conditions, as well as those treated with PAR and PAR+UVBR, all showed different concentrations of enzymatic response, including glutathione peroxidase and reductase activity. In summary, the present study demonstrates that P. acanthophora var. brasiliensis shows the activation of distinct mechanisms against natural radiation, PAR and PAR+UVBR.


Assuntos
Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Porphyra/metabolismo , Porphyra/efeitos da radiação , Raios Ultravioleta , Carotenoides/análise , Forma Celular/efeitos da radiação , Parede Celular/metabolismo , Clorofila/análise , Clorofila A , Citoplasma/metabolismo , Ativação Enzimática , Ensaios Enzimáticos , Glutationa Peroxidase/metabolismo , Microscopia Confocal/métodos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , NADH Desidrogenase , Forma das Organelas/efeitos da radiação , Fótons , Fotossíntese , Células Vegetais/metabolismo , Porphyra/enzimologia , Porphyra/crescimento & desenvolvimento , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...