Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 150(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36975217

RESUMO

Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible modular system. Here, we establish several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse beta-globin minimal promoter coupled to several fluorophores, CreERT2 and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein mCerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3' vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Finally, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker that is active before hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish and other models.


Assuntos
Técnicas de Transferência de Genes , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais Geneticamente Modificados , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Elementos de DNA Transponíveis/genética
2.
J Cardiovasc Dev Dis ; 8(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918756

RESUMO

The vertebrate heart integrates cells from the early-differentiating first heart field (FHF) and the later-differentiating second heart field (SHF), both emerging from the lateral plate mesoderm. In mammals, this process forms the basis for the development of the left and right ventricle chambers and subsequent chamber septation. The single ventricle-forming zebrafish heart also integrates FHF and SHF lineages during embryogenesis, yet the contributions of these two myocardial lineages to the adult zebrafish heart remain incompletely understood. Here, we characterize the myocardial labeling of FHF descendants in both the developing and adult zebrafish ventricle. Expanding previous findings, late gastrulation-stage labeling using drl-driven CreERT2 recombinase with a myocardium-specific, myl7-controlled, loxP reporter results in the predominant labeling of FHF-derived outer curvature and the right side of the embryonic ventricle. Raised to adulthood, such lineage-labeled hearts retain broad areas of FHF cardiomyocytes in a region of the ventricle that is positioned at the opposite side to the atrium and encompasses the apex. Our data add to the increasing evidence for a persisting cell-based compartmentalization of the adult zebrafish ventricle even in the absence of any physical boundary.

3.
Genes Dev ; 32(21-22): 1443-1458, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366904

RESUMO

Bcl9 and Pygopus (Pygo) are obligate Wnt/ß-catenin cofactors in Drosophila, yet their contribution to Wnt signaling during vertebrate development remains unresolved. Combining zebrafish and mouse genetics, we document a conserved, ß-catenin-associated function for BCL9 and Pygo proteins during vertebrate heart development. Disrupting the ß-catenin-BCL9-Pygo complex results in a broadly maintained canonical Wnt response yet perturbs heart development and proper expression of key cardiac regulators. Our work highlights BCL9 and Pygo as selective ß-catenin cofactors in a subset of canonical Wnt responses during vertebrate development. Moreover, our results implicate alterations in BCL9 and BCL9L in human congenital heart defects.


Assuntos
Cardiopatias Congênitas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fatores de Transcrição/genética , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Coração/embriologia , Camundongos , Mutação , Miocárdio/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , beta Catenina/metabolismo
4.
Dev Dyn ; 247(10): 1146-1159, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30194800

RESUMO

BACKGROUND: Spatiotemporal perturbation of signaling pathways in vivo remains challenging and requires precise transgenic control of signaling effectors. Fibroblast growth factor (FGF) signaling guides multiple developmental processes, including body axis formation and cell fate patterning. In zebrafish, mutants and chemical perturbations affecting FGF signaling have uncovered key developmental processes; however, these approaches cause embryo-wide perturbations, rendering assessment of cell-autonomous vs. non-autonomous requirements for FGF signaling in individual processes difficult. RESULTS: Here, we created the novel transgenic line fgfr1-dn-cargo, encoding dominant-negative Fgfr1a with fluorescent tag under combined Cre/lox and heatshock control to perturb FGF signaling spatiotemporally. Validating efficient perturbation of FGF signaling by fgfr1-dn-cargo primed with ubiquitous CreERT2, we established that primed, heatshock-induced fgfr1-dn-cargo behaves similarly to pulsed treatment with the FGFR inhibitor SU5402. Priming fgfr1-dn-cargo with CreERT2 in the lateral plate mesoderm triggered selective cardiac and pectoral fin phenotypes without drastic impact on overall embryo patterning. Harnessing lateral plate mesoderm-specific FGF inhibition, we recapitulated the cell-autonomous and temporal requirement for FGF signaling in pectoral fin outgrowth, as previously inferred from pan-embryonic FGF inhibition. CONCLUSIONS: As a paradigm for rapid Cre/lox-mediated signaling perturbations, our results establish fgfr1-dn-cargo as a genetic tool to define the spatiotemporal requirements for FGF signaling in zebrafish. Developmental Dynamics 247:1146-1159, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Análise Espaço-Temporal , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Integrases/metabolismo , Mesoderma/metabolismo , Peixe-Zebra/embriologia
5.
Nat Commun ; 9(1): 2001, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29784942

RESUMO

The vertebrate heart develops from several progenitor lineages. After early-differentiating first heart field (FHF) progenitors form the linear heart tube, late-differentiating second heart field (SHF) progenitors extend the atrium and ventricle, and form inflow and outflow tracts (IFT/OFT). However, the position and migration of late-differentiating progenitors during heart formation remains unclear. Here, we track zebrafish heart development using transgenics based on the cardiopharyngeal gene tbx1. Live imaging uncovers a tbx1 reporter-expressing cell sheath that continuously disseminates from the lateral plate mesoderm towards the forming heart tube. High-speed imaging and optogenetic lineage tracing corroborates that the zebrafish ventricle forms through continuous addition from the undifferentiated progenitor sheath followed by late-phase accrual of the bulbus arteriosus (BA). FGF inhibition during sheath migration reduces ventricle size and abolishes BA formation, refining the window of FGF action during OFT formation. Our findings consolidate previous end-point analyses and establish zebrafish ventricle formation as a continuous process.


Assuntos
Células-Tronco/citologia , Peixe-Zebra/embriologia , Animais , Diferenciação Celular , Linhagem da Célula , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/citologia , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Masculino , Mesoderma/embriologia , Mesoderma/metabolismo , Morfogênese , Células-Tronco/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Nat Commun ; 9(1): 428, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382818

RESUMO

During development, mesodermal progenitors from the first heart field (FHF) form a primitive cardiac tube, to which progenitors from the second heart field (SHF) are added. The contribution of FHF and SHF progenitors to the adult zebrafish heart has not been studied to date. Here we find, using genetic tbx5a lineage tracing tools, that the ventricular myocardium in the adult zebrafish is mainly derived from tbx5a+ cells, with a small contribution from tbx5a- SHF progenitors. Notably, ablation of ventricular tbx5a+-derived cardiomyocytes in the embryo is compensated by expansion of SHF-derived cells. In the adult, tbx5a expression is restricted to the trabeculae and excluded from the outer cortical layer. tbx5a-lineage tracing revealed that trabecular cardiomyocytes can switch their fate and differentiate into cortical myocardium during adult heart regeneration. We conclude that a high degree of cardiomyocyte cell fate plasticity contributes to efficient regeneration.


Assuntos
Ventrículos do Coração/citologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Regeneração/genética , Proteínas com Domínio T/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Linhagem da Célula/genética , Rastreamento de Células , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ventrículos do Coração/crescimento & desenvolvimento , Ventrículos do Coração/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Organogênese/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas com Domínio T/deficiência , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteína Vermelha Fluorescente
8.
Development ; 143(11): 2025-37, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27130213

RESUMO

CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9-sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient bi-allelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo.


Assuntos
Sistemas CRISPR-Cas/genética , Complexos Multiproteicos/metabolismo , Mutagênese/genética , Ribonucleoproteínas/metabolismo , Alelos , Animais , Sequência de Bases , Sítios de Ligação , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Fluorescência , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Morfolinos/farmacologia , Mutação/genética , Fenótipo , RNA Guia de Cinetoplastídeos/genética , Proteínas Recombinantes de Fusão/metabolismo , Recombinação Genética/genética , Solubilidade , Fatores de Transcrição/metabolismo , Transgenes , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
PLoS One ; 11(4): e0152989, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27077909

RESUMO

Mutant Estrogen Receptor (ERT2) ligand-binding domain fusions with Cre recombinase are a key tool for spatio-temporally controlled genetic recombination with the Cre/lox system. CreERT2 is efficiently activated in a concentration-dependent manner by the Tamoxifen metabolite trans-4-OH-Tamoxifen (trans-4-OHT). Reproducible and efficient Cre/lox experimentation is hindered by the gradual loss of CreERT2 induction potency upon prolonged storage of dissolved trans-4-OHT, which potentially results from gradual trans-to-cis isomerization or degradation. Here, we combined zebrafish CreERT2 recombination experiments and cell culture assays to document the gradual activity loss of trans-4-OHT and describe the alternative Tamoxifen metabolite Endoxifen as more stable alternative compound. Endoxifen retains potent activation upon prolonged storage (3 months), yet consistently induces half the ERT2 domain fusion activity compared to fresh trans-4-OHT. Using 1H-NMR analysis, we reveal that trans-4-OHT isomerization is undetectable upon prolonged storage in either DMSO or Ethanol, ruling out isomer transformation as cause for the gradual loss of trans-4-OHT activity. We further establish that both trans-4-OHT and Endoxifen are insensitive to light exposure under regular laboratory handling conditions. We attribute the gradual loss of trans-4-OHT potency to precipitation over time, and show that heating of aged trans-4-OHT aliquots reinstates their CreERT2 induction potential. Our data establish Endoxifen as potent and reproducible complementary compound to 4-OHT to control ERT2 domain fusion proteins in vivo, and provide a framework for efficient chemically controlled recombination experiments.


Assuntos
Integrases/genética , Receptores de Estrogênio/genética , Tamoxifeno/metabolismo , Tamoxifeno/farmacologia , Animais , Linhagem Celular , Estabilidade de Medicamentos , Temperatura Alta , Humanos , Estrutura Terciária de Proteína , Receptores de Estrogênio/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Recombinação Genética/efeitos dos fármacos , Estereoisomerismo , Tamoxifeno/análogos & derivados , Tamoxifeno/química , Fatores de Tempo , Peixe-Zebra
10.
Cell ; 161(7): 1566-75, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26073943

RESUMO

The contribution of cell generation to physiological heart growth and maintenance in humans has been difficult to establish and has remained controversial. We report that the full complement of cardiomyocytes is established perinataly and remains stable over the human lifespan, whereas the numbers of both endothelial and mesenchymal cells increase substantially from birth to early adulthood. Analysis of the integration of nuclear bomb test-derived (14)C revealed a high turnover rate of endothelial cells throughout life (>15% per year) and more limited renewal of mesenchymal cells (<4% per year in adulthood). Cardiomyocyte exchange is highest in early childhood and decreases gradually throughout life to <1% per year in adulthood, with similar turnover rates in the major subdivisions of the myocardium. We provide an integrated model of cell generation and turnover in the human heart.


Assuntos
Miócitos Cardíacos/citologia , Células Endoteliais/citologia , Coração/fisiologia , Humanos , Antígenos Comuns de Leucócito/metabolismo , Mesoderma/citologia , Miocárdio/citologia , Poliploidia , Datação Radiométrica
11.
EMBO J ; 32(16): 2231-47, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23892456

RESUMO

Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog-Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog-Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2-Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal.


Assuntos
Proliferação de Células , Células-Tronco Embrionárias/fisiologia , Proteínas de Homeodomínio/metabolismo , Domínios e Motivos de Interação entre Proteínas/genética , Fatores de Transcrição SOXB1/metabolismo , Animais , Ensaio de Unidades Formadoras de Colônias , Células-Tronco Embrionárias/metabolismo , Immunoblotting , Imunoprecipitação , Camundongos , Proteína Homeobox Nanog , Plasmídeos/genética , Mapeamento de Interação de Proteínas , Técnica de Seleção de Aptâmeros , Triptofano/metabolismo , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...