Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 199: 69-76, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25701680

RESUMO

Threonine aldolase (TA) catalyzes a reversible reaction, in which threonine is decomposed into glycine and acetaldehyde. The same enzyme can be used to catalyze aldol reaction between glycine and a variety of aromatic and aliphatic aldehydes, thus creating various alpha-amino-alcohols. Therefore, TA is a very promising enzyme that could be used to prepare biologically active compounds or building blocks for pharmaceutical industry. Rational design was applied to thermophilic TA from Thermotoga maritima to improve thermal stability by the incorporation of salt and disulfide bridges between subunits in the functional tetramer. An activity assay together with CD analysis and Western-blot detection was used to evaluate mutants. Except one, each of the designed mutants preserved activity toward the natural substrate. One of the 10 proposed single point mutants, P56C, displayed significantly enhanced stability compared to the wild type (WT). Its initial activity was not affected and persisted longer than WT, proportionally to increased stability. Additionally one of the mutants, W86E, displayed enhanced activity, with stability similar to WT. Higher activity may be explained by a subtle change in active site availability. Salt bridge formation between glutamic acid at position 86 and arginine at position 120 in the neighboring chain may be responsible for the slight shift of the chain fragment, thus creating wider access to the active site both for the substrate and PLP.


Assuntos
Glicina Hidroximetiltransferase/metabolismo , Thermotoga maritima/enzimologia , Domínio Catalítico , Estabilidade Enzimática/fisiologia , Glicina Hidroximetiltransferase/genética , Mutação
2.
FEBS J ; 274(21): 5767-79, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17958702

RESUMO

D-3-Hydroxybutyrate dehydrogenase from Pseudomonas putida belongs to the family of short-chain dehydrogenases/reductases. We have determined X-ray structures of the D-3-hydroxybutyrate dehydrogenase from Pseudomonas putida, which was recombinantly expressed in Escherichia coli, in three different crystal forms to resolutions between 1.9 and 2.1 A. The so-called substrate-binding loop (residues 187-210) was partially disordered in several subunits, in both the presence and absence of NAD(+). However, in two subunits, this loop was completely defined in an open conformation in the apoenzyme and in a closed conformation in the complex structure with NAD(+). Structural comparisons indicated that the loop moves as a rigid body by about 46 degrees . However, the two small alpha-helices (alphaFG1 and alphaFG2) of the loop also re-orientated slightly during the conformational change. Probably, the interactions of Val185, Thr187 and Leu189 with the cosubstrate induced the conformational change. A model of the binding mode of the substrate D-3-hydroxybutyrate indicated that the loop in the closed conformation, as a result of NAD(+) binding, is positioned competent for catalysis. Gln193 is the only residue of the substrate-binding loop that interacts directly with the substrate. A translation, libration and screw (TLS) analysis of the rigid body movement of the loop in the crystal showed significant librational displacements, describing the coordinated movement of the substrate-binding loop in the crystal. NAD(+) binding increased the flexibility of the substrate-binding loop and shifted the equilibrium between the open and closed forms towards the closed form. The finding that all NAD(+) -bound subunits are present in the closed form and all NAD(+) -free subunits in the open form indicates that the loop closure is induced by cosubstrate binding alone. This mechanism may contribute to the sequential binding of cosubstrate followed by substrate.


Assuntos
Hidroxibutirato Desidrogenase/química , Pseudomonas putida/enzimologia , Ácido 3-Hidroxibutírico/química , Ácido 3-Hidroxibutírico/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxibutirato Desidrogenase/metabolismo , Cinética , NAD/química , NAD/metabolismo , Conformação Proteica , Pseudomonas fragi/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
3.
Chembiochem ; 7(9): 1410-8, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16888731

RESUMO

D-3-Hydroxybutyrate dehydrogenase from Pseudomonas putida (EC 1.1.1.30) belongs to the family of short-chain dehydrogenases/reductases (SDRs). It catalyzes the reversible and stereospecific oxidation of D-3-hydroxybutyrate (D-3-HB) to acetoacetate with the aid of NAD(+) as coenzyme. This study contributes to understanding the mechanism and the high specificity of this enzyme towards its negatively charged and hydrophilic substrate. Sequence comparison of 44 bacterial HBDHs shows the residues Gln91, His141, Lys149, Lys192, and Gln193 to be strictly conserved. Site-directed mutagenesis of these amino acids to alanine and subsequent kinetic characterization of the mutated enzymes provides insight into the importance of these residues for substrate recognition and catalysis. Docking studies and molecular-dynamics simulations based on a three-dimensional structure model of a complex between P. putida HBDH and its coenzyme obtained by comparative molecular modeling were performed and provided deeper insight into the binding of the ligands at the molecular level. They show the residues Gln91, His141, Gln193, and, in particular, Lys149 to be involved in a hydrogen-bonding network with the carboxylate group of the substrate.


Assuntos
Hidroxibutirato Desidrogenase/química , Pseudomonas putida/enzimologia , Ácido 3-Hidroxibutírico/química , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Simulação por Computador , Escherichia coli/genética , Ligação de Hidrogênio , Hidroxibutirato Desidrogenase/genética , Hidroxibutirato Desidrogenase/metabolismo , Cinética , Ácido Láctico/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NAD/química , Conformação Proteica , Pseudomonas putida/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...