Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3161, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605056

RESUMO

Since the lipid raft model was developed at the end of the last century, it became clear that the specific molecular arrangements of phospholipid assemblies within a membrane have profound implications in a vast range of physiological functions. Studies of such condensed lipid islands in model systems using fluorescence and Brewster angle microscopies have shown a wide range of sizes and morphologies, with suggestions of substantial in-plane molecular anisotropy and mesoscopic structural chirality. Whilst these variations can significantly alter many membrane properties including its fluidity, permeability and molecular recognition, the details of the in-plane molecular orientations underlying these traits remain largely unknown. Here, we use phase-resolved sum-frequency generation microscopy on model membranes of mixed chirality phospholipid monolayers to fully determine the three-dimensional molecular structure of the constituent micron-scale condensed domains. We find that the domains possess curved molecular directionality with spiralling mesoscopic packing, where both the molecular and spiral turning directions depend on the lipid chirality, but form structures clearly deviating from mirror symmetry for different enantiomeric mixtures. This demonstrates strong enantioselectivity in the domain growth process and indicates fundamental thermodynamic differences between homo- and heterochiral membranes, which may be relevant in the evolution of homochirality in all living organisms.

2.
J Cell Biol ; 223(5)2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407313

RESUMO

Axonal transport is essential for neuronal survival. This is driven by microtubule motors including dynein, which transports cargo from the axon tip back to the cell body. This function requires its cofactor dynactin and regulators LIS1 and NDEL1. Due to difficulties imaging dynein at a single-molecule level, it is unclear how this motor and its regulators coordinate transport along the length of the axon. Here, we use a neuron-inducible human stem cell line (NGN2-OPTi-OX) to endogenously tag dynein components and visualize them at a near-single molecule regime. In the retrograde direction, we find that dynein and dynactin can move the entire length of the axon (>500 µm). Furthermore, LIS1 and NDEL1 also undergo long-distance movement, despite being mainly implicated with the initiation of dynein transport. Intriguingly, in the anterograde direction, dynein/LIS1 moves faster than dynactin/NDEL1, consistent with transport on different cargos. Therefore, neurons ensure efficient transport by holding dynein/dynactin on cargos over long distances but keeping them separate until required.


Assuntos
Transporte Axonal , Axônios , Complexo Dinactina , Dineínas , Neurônios , Humanos , Complexo Dinactina/genética , Dineínas/genética , Células-Tronco Neurais
4.
J Chem Phys ; 159(16)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37873965

RESUMO

Second-order nonlinear spectroscopy is becoming an increasingly important technique in the study of interfacial systems owing to its marked ability to study molecular structures and interactions. The properties of such a system under investigation are contained within their intrinsic second-order susceptibilities which are mapped onto the measured nonlinear signals (e.g. sum-frequency generation) through the applied experimental settings. Despite this yielding a plethora of information, many crucial aspects of molecular systems typically remain elusive, for example the depth distributions, molecular orientation and local dielectric properties of its constituent chromophores. Here, it is shown that this information is contained within the phase of the measured signal and, critically, can be extracted through measurement of multiple nonlinear pathways (both the sum-frequency and difference-frequency output signals). Furthermore, it is shown that this novel information can directly be correlated to the characteristic vibrational spectra, enabling a new type of advanced sample characterization and a profound analysis of interfacial molecular structures. The theory underlying the different contributions to the measured phase of distinct nonlinear pathways is derived, after which the presented phase disentanglement methodology is experimentally demonstrated for model systems of self-assembled monolayers on several metallic substrates. The obtained phases of the local fields are compared to the corresponding phases of the nonlinear Fresnel factors calculated through the commonly used theoretical model, the three-layer model. It is found that, despite its rather crude assumptions, the model yields remarkable similarity to the experimentally obtained values, thus providing validation of the model for many sample classes.

5.
Cell Death Dis ; 13(7): 584, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798698

RESUMO

Deficits in axonal transport are one of the earliest pathological outcomes in several models of amyotrophic lateral sclerosis (ALS), including SOD1G93A mice. Evidence suggests that rescuing these deficits prevents disease progression, stops denervation, and extends survival. Kinase inhibitors have been previously identified as transport enhancers, and are being investigated as potential therapies for ALS. For example, inhibitors of p38 mitogen-activated protein kinase and insulin growth factor receptor 1 have been shown to rescue axonal transport deficits in vivo in symptomatic SOD1G93A mice. In this work, we investigated the impact of RET, the tyrosine kinase receptor for glial cell line-derived neurotrophic factor (GDNF), as a modifier of axonal transport. We identified the fundamental interplay between RET signalling and axonal transport in both wild-type and SOD1G93A motor neurons in vitro. We demonstrated that blockade of RET signalling using pharmacological inhibitors and genetic knockdown enhances signalling endosome transport in wild-type motor neurons and uncovered a divergence in the response of primary motor neurons to GDNF compared with cell lines. Finally, we showed that inhibition of the GDNF-RET signalling axis rescues in vivo transport deficits in early symptomatic SOD1G93A mice, promoting RET as a potential therapeutic target in the treatment of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Transporte Axonal , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteínas Proto-Oncogênicas c-ret , Esclerose Lateral Amiotrófica/metabolismo , Animais , Transporte Axonal/fisiologia , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
6.
Polymers (Basel) ; 14(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35012214

RESUMO

The blend of polyetheretherketone (PEEK) and polybenzimidazole (PBI) produces a high-performance blend (PPB) that is a potential replacement material in several industries due to its high temperature stability and desirable tribological properties. Understanding the nanoscale structure and interface of the two domains of the blend is critical for elucidating the origin of these desirable properties. Whilst achieving the physical characterisation of the domain structures is relatively uncomplicated, the elucidation of structures at the interface presents a significant experimental challenge. In this work, we combine atomic force microscopy (AFM) with an IR laser (AFM-IR) and thermal cantilever probes (nanoTA) to gain insights into the chemical heterogeneity and extent of mixing within the blend structure for the first time. The AFM-IR and nanoTA measurements show that domains in the blend are compositionally different from those of the pure PEEK and PBI polymers, with significant variations observed in a transition region several microns wide in proximity to domain boundary. This strongly points to physical mixing of the two components on a molecular scale at the interface. The versatility intrinsic to the combined methodology employed in this work provides nano- and microscale chemical information that can be used to understand the link between properties of different length scales across a wide range of materials.

7.
J Microsc ; 284(3): 189-202, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34313326

RESUMO

Atomic force microscopy integrated with infrared spectroscopy (AFM-IR) has been used to topographically and chemically examine the medulla of human hair fibres with nanometre scale lateral resolution. The mapping of cross-sections of the medulla showed two distinct structural components which were subsequently characterised spectroscopically. One of these components was shown to be closely similar to cortical cell species, consistent with the fibrillar structures found in previous electron microscope (EM) investigations. The other component showed large chemical differences from cortical cells and was assigned to globular vacuole species, also confirming EM observations. Further characterisation of the two components was achieved through spectral deconvolution of the protein Amide-I and -II bands. This showed that the vacuoles have a greater proportion of the most thermodynamically stable conformation, namely the antiparallel ß-sheet structures. This chimes with the observed lower cysteine concentration, indicating a lower proportion of restrictive disulphide cross-link bonding. Furthermore, the large α-helix presence within the vacuoles points to a loss of matrix-like material as well as significant intermolecular stabilisation of the protein structures. By analysing the carbonyl stretching region, it was established that the fibrillar, cortical cell-like components showed considerable stabilisation from H-bonding interactions, similar to the cortex, involving amino acid side chains whereas, in contrast, the vacuoles were found to only be stabilised significantly by structural lipids.


Assuntos
Cabelo , Lipídeos/química , Proteínas , Humanos , Microscopia de Força Atômica , Espectrofotometria Infravermelho
8.
Biophys J ; 119(8): 1474-1480, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33035449

RESUMO

The air sensitivity of many substrates, and specifically biosurfaces, presents an experimental challenge for their analysis by vibrational spectroscopy and, in particular, infrared microscopy on a nanometer scale. The recent development of atomic-force-microscopy-based infrared spectroscopy (AFM-IR), which circumvents the Abbe diffraction limit, allows nanoscale chemical characterization of surfaces. Additionally, this technique has been shown to work for thin films under aqueous environments but is limited to substrates up to 10 nm thick, thus ruling out application to many biological surfaces. To circumvent this restriction, we have utilized hydrogels to cover such surfaces and maintain a more physiologically representative environment for biological substrates. We show that it is feasible to use AFM-IR to chemically characterize this type of substrate buried under a thin hydrogel film. Specifically, this work describes the AFM-IR spectra of red blood cells under polyvinyl alcohol hydrogels.


Assuntos
Eritrócitos , Hidrogéis , Espectrofotometria Infravermelho , Metilgalactosídeos , Microscopia de Força Atômica
9.
Appl Spectrosc ; 74(12): 1540-1550, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32462900

RESUMO

The hair cuticle provides significant protection from external sources, as well as giving rise to many of its bulk properties, e.g., friction, shine, etc. that are important in many industries. In this work, atomic force microscopy-infrared spectroscopy (AFM-IR) has been used to investigate the nanometer-scale topography and chemical structure of human hair cuticles in two spectral regions. AFM-IR combines atomic force microscopy with a tunable infrared laser and circumvents the diffraction limit that has impaired traditional infrared spectroscopy, facilitating surface-selective spectroscopy at ultra-spatial resolution. This high resolution was exploited to probe the protein secondary structures and lipid content, as well as specific amino acid residues, e.g., cystine, within individual cuticle cells. Characterization across the top of individual cells showed large inhomogeneity in protein and lipid contributions that suggested significant changes to physical properties on approaching the hair edge. Additionally, the exposed layered sub-structure of individual cuticle cells allowed their chemical compositions to be assessed. The variation of protein, lipid, and cystine composition in the observed layers, as well as the measured dimensions of each, correspond closely to that of the epicuticle, A-layer, exocuticle, and endocuticle layers of the cuticle cell sub-structure, confirming previous findings, and demonstrate the potential of AFM-IR for nanoscale chemical characterization within biological substrates.


Assuntos
Cabelo , Lipídeos/análise , Proteínas/análise , Cabelo/química , Cabelo/ultraestrutura , Humanos , Microscopia de Força Atômica , Espectrofotometria Infravermelho
10.
Environ Sci Technol ; 54(10): 6272-6280, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32329614

RESUMO

Despite increasing efforts to decarbonize the power sector, the utilization of natural gas-fired power plants is anticipated to continue. This study models existing solvent-based carbon capture technologies on natural gas-fired power plants, using site-specific emissions and regionally defined cost parameters to calculate the cost of CO2 avoided for two scenarios: delivery to and injection within reliable sequestration sites, and delivery and injection for the purpose of CO2-enhanced oil recovery (EOR). Despite the application of credits from the existing federal tax code 45Q, a minimum incentive gap of roughly $38/tCO2 remains for the geologic sequestration of CO2 and $56/tCO2 for CO2-EOR (before consideration of revenue generated from delivered CO2 contracts). At full escalation of 45Q, delivered CO2 costs from this sector for geologic sequestration could reach as low as $22/tCO2. However, given the capital investment required in the near-term, it would be beneficial if the credit provided the greatest economic benefit early on and decreasing over time as deployment continues to ramp up. Additionally, due to the high qualifying limit of 45Q for the power sector, e.g., 500 ktCO2/yr, the tax credit incentivizes the capture of roughly 397 MtCO2/yr at a 90% capture efficiency or 75% of the emissions in this sector, with missed opportunities equating to roughly 118 MtCO2. Advancing the scale of carbon capture and sequestration (CCS) will require both technological advances in the capture technology, cost reductions through the leveraging of existing infrastructure, and increased policy incentives in terms of cost along with the reduction of qualifying limits.


Assuntos
Sequestro de Carbono , Gás Natural , Carbono , Dióxido de Carbono/análise , Centrais Elétricas
11.
Toxicon X ; 5: 100019, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32140681

RESUMO

Neurological diseases constitute a quarter of global disease burden and are expected to rise worldwide with the ageing of human populations. There is an increasing need to develop new molecular systems which can deliver drugs specifically into neurons, non-dividing cells meant to last a human lifetime. Neuronal drug delivery must rely on agents which can recognise neurons with high specificity and affinity. Here we used a recently introduced 'stapling' system to prepare macromolecules carrying duplicated binding domains from the clostridial family of neurotoxins. We engineered individual parts of clostridial neurotoxins separately and combined them using a strong alpha-helical bundle. We show that combining two identical binding domains of tetanus and botulinum type D neurotoxins, in a sterically defined way by protein stapling, allows enhanced intracellular delivery of molecules into neurons. We also engineered a botulinum neurotoxin type C variant with a duplicated binding domain which increased enzymatic delivery compared to the native type C toxin. We conclude that duplication of the binding parts of tetanus or botulinum neurotoxins will allow production of high avidity agents which could deliver imaging reagents and large therapeutic enzymes into neurons with superior efficiency.

12.
EMBO Rep ; 21(3): e49129, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32030864

RESUMO

Signalling endosomes are essential for trafficking of activated ligand-receptor complexes and their distal signalling, ultimately leading to neuronal survival. Although deficits in signalling endosome transport have been linked to neurodegeneration, our understanding of the mechanisms controlling this process remains incomplete. Here, we describe a new modulator of signalling endosome trafficking, the insulin-like growth factor 1 receptor (IGF1R). We show that IGF1R inhibition increases the velocity of signalling endosomes in motor neuron axons, both in vitro and in vivo. This effect is specific, since IGF1R inhibition does not alter the axonal transport of mitochondria or lysosomes. Our results suggest that this change in trafficking is linked to the dynein adaptor bicaudal D1 (BICD1), as IGF1R inhibition results in an increase in the de novo synthesis of BICD1 in the axon of motor neurons. Finally, we found that IGF1R inhibition can improve the deficits in signalling endosome transport observed in a mouse model of amyotrophic lateral sclerosis (ALS). Taken together, these findings suggest that IGF1R inhibition may be a new therapeutic target for ALS.


Assuntos
Transporte Axonal , Endossomos , Animais , Axônios/metabolismo , Endossomos/metabolismo , Camundongos , Neurônios Motores , Transdução de Sinais
13.
Appl Spectrosc ; 74(5): 597-615, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31868519

RESUMO

The challenge of deriving quantitative information from the infrared spectra of proteins arises from the large number of secondary structures and amino acid side-chain functional groups that all contribute to the spectral intensity, such as within the amide I band (1600-1700 cm-1). The band is invariably heavily convoluted from overlapping spectral features, thereby making interpretation difficult such that deconvolution is usually required. This work critically examines the methods available to deconvolute the spectra and assesses the commonly used methods and algorithms applied to vibrational spectra for smoothing and peak identification. We show that unless their spectra have very high signal-to-noise ratios, quantitative analysis to decipher protein constituents is not feasible. The advantages and disadvantages of spectral smoothing using adjacent averaging, the Savitzky-Golay filter and the fast Fourier transform filter are examined in detail. The use of derivative spectra to identify peaks is described with particular reference to the influence and reduction of interfering water bands in the amide I region. The reliability of band narrowing techniques such as second-derivative analysis or Fourier deconvolution that lead to the identification of the contributing protein peaks is investigated. Both methods are shown to be limited in their capacity to resolve features with very similar frequencies. Additionally, the presence of narrow bands arising from high-frequency noise whether from atmospheric water vapor, acoustic vibrations, or electrical interference results in both methods becoming increasingly unusable as narrow bands are preferentially enhanced at the expense of broad ones such as the amide I bands. An optimal strategy is critically developed to allow accurate determination and quantification of protein constituents and their conformations. Additionally, quantitative methods are proposed to account for baseline shifts, which would otherwise introduce significant errors in similarity indices.


Assuntos
Proteínas/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Algoritmos , Análise de Fourier , Cabelo/química , Humanos , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta
14.
Nat Rev Neurol ; 15(12): 691-703, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31558780

RESUMO

Axonal transport is the process whereby motor proteins actively navigate microtubules to deliver diverse cargoes, such as organelles, from one end of the axon to the other, and is widely regarded as essential for nerve development, function and survival. Mutations in genes encoding key components of the transport machinery, including motor proteins, motor adaptors and microtubules, have been discovered to cause neurological disease. Moreover, disruptions in axonal cargo trafficking have been extensively reported across a wide range of nervous system disorders. However, whether these impairments have a major causative role in, are contributing to or are simply a consequence of neuronal degeneration remains unclear. Therefore, the fundamental relevance of defective trafficking along axons to nerve dysfunction and pathology is often debated. In this article, we review the latest evidence emerging from human and in vivo studies on whether perturbations in axonal transport are indeed integral to the pathogenesis of neurological disease.


Assuntos
Transporte Axonal/fisiologia , Axônios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Doenças do Sistema Nervoso/metabolismo , Animais , Axônios/patologia , Proteínas do Citoesqueleto/genética , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Transporte Proteico/fisiologia
15.
Cell Death Dis ; 9(6): 596, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789529

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by the degeneration of upper and lower motor neurons. Defects in axonal transport have been observed pre-symptomatically in the SOD1G93A mouse model of ALS, and have been proposed to play a role in motor neuron degeneration as well as in other pathologies of the nervous system, such as Alzheimer's disease and hereditary neuropathies. In this study, we screen a library of small-molecule kinase inhibitors towards the identification of pharmacological enhancers of the axonal retrograde transport of signalling endosomes, which might be used to normalise the rate of this process in diseased neurons. Inhibitors of p38 mitogen-activated protein kinases (p38 MAPK) were identified in this screen and were found to correct deficits in axonal retrograde transport of signalling endosomes in cultured primary SOD1G93A motor neurons. In vitro knockdown experiments revealed that the alpha isoform of p38 MAPK (p38 MAPKα) was the sole isoform responsible for SOD1G93A-induced transport deficits. Furthermore, we found that acute treatment with p38 MAPKα inhibitors restored the physiological rate of axonal retrograde transport in vivo in early symptomatic SOD1G93A mice. Our findings demonstrate the pathogenic effect of p38 MAPKα on axonal retrograde transport and identify a potential therapeutic strategy for ALS.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/patologia , Transporte Axonal , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Acetilcarnitina/farmacologia , Animais , Transporte Axonal/efeitos dos fármacos , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Imidazóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Músculos/efeitos dos fármacos , Músculos/fisiopatologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Quinazolinonas/farmacologia , Receptores de Fator de Crescimento Neural/metabolismo , Superóxido Dismutase/metabolismo , Toxina Tetânica/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Toxicon ; 147: 58-67, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29031941

RESUMO

Tetanus (TeNT) and botulinum (BoNT) neurotoxins, the causative agents of tetanus and botulism, respectively, are the most potent toxic molecules known to mankind. This extreme potency is attributed to: i) their specificity for essential components of the neurotransmitter release machinery present at vertebrate synapses, and ii) their high-affinity targeting to motor neurons by binding to polysialogangliosides and protein receptors. Comprising the clostridial neurotoxin family, TeNT and BoNTs engage distinct surface receptors and intracellular sorting pathways in neurons. BoNTs bind to the intraluminal domain of specific synaptic vesicle proteins that are exposed to the extracellular milieu upon exocytosis, and are taken up by synaptic vesicle recycling. A sizeable proportion of BoNT molecules remain at the neuromuscular junction, where their protease moiety is released into the cytoplasm, blocking synaptic transmission and causing flaccid paralysis. In contrast, TeNT undergoes binding to specific components of the basal membrane at the neuromuscular junction, is endocytosed into motor neurons and sorted to axonal signalling endosomes. Following this, TeNT is transported to the soma of motor neurons located in the spinal cord or brainstem, and then transcytosed to inhibitory interneurons, where it blocks synaptic transmission. TeNT-induced impairment of inhibitory input leads to hyperactivity of motor neurons, causing spastic paralysis, which is the hallmark of tetanus. This review examines the molecular mechanisms leading to the entry, sorting and intracellular trafficking of TeNT and BoNTs.


Assuntos
Toxinas Botulínicas/metabolismo , Toxinas Botulínicas/toxicidade , Transporte Proteico/fisiologia , Toxina Tetânica/metabolismo , Toxina Tetânica/toxicidade , Animais , Humanos
17.
Neurology ; 87(13): 1329-36, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27581216

RESUMO

OBJECTIVE: To investigate serum neurofilament light chain (NfL) concentrations in frontotemporal dementia (FTD) and to see whether they are associated with the severity of disease. METHODS: Serum samples were collected from 74 participants (34 with behavioral variant FTD [bvFTD], 3 with FTD and motor neuron disease and 37 with primary progressive aphasia [PPA]) and 28 healthy controls. Twenty-four of the FTD participants carried a pathogenic mutation in C9orf72 (9), microtubule-associated protein tau (MAPT; 11), or progranulin (GRN; 4). Serum NfL concentrations were determined with the NF-Light kit transferred onto the single-molecule array platform and compared between FTD and healthy controls and between the FTD clinical and genetic subtypes. We also assessed the relationship between NfL concentrations and measures of cognition and brain volume. RESULTS: Serum NfL concentrations were higher in patients with FTD overall (mean 77.9 pg/mL [SD 51.3 pg/mL]) than controls (19.6 pg/mL [SD 8.2 pg/mL]; p < 0.001). Concentrations were also significantly higher in bvFTD (57.8 pg/mL [SD 33.1 pg/mL]) and both the semantic and nonfluent variants of PPA (95.9 and 82.5 pg/mL [SD 33.0 and 33.8 pg/mL], respectively) compared with controls and in semantic variant PPA compared with logopenic variant PPA. Concentrations were significantly higher than controls in both the C9orf72 and MAPT subgroups (79.2 and 40.5 pg/mL [SD 48.2 and 20.9 pg/mL], respectively) with a trend to a higher level in the GRN subgroup (138.5 pg/mL [SD 103.3 pg/mL). However, there was variability within all groups. Serum concentrations correlated particularly with frontal lobe atrophy rate (r = 0.53, p = 0.003). CONCLUSIONS: Increased serum NfL concentrations are seen in FTD but show wide variability within each clinical and genetic group. Higher concentrations may reflect the intensity of the disease in FTD and are associated with more rapid atrophy of the frontal lobes.


Assuntos
Demência Frontotemporal/sangue , Proteínas de Neurofilamentos/sangue , Idoso , Afasia Primária Progressiva/sangue , Afasia Primária Progressiva/diagnóstico por imagem , Afasia Primária Progressiva/genética , Atrofia , Biomarcadores/sangue , Proteína C9orf72 , Progressão da Doença , Feminino , Seguimentos , Lobo Frontal/diagnóstico por imagem , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/sangue , Doença dos Neurônios Motores/diagnóstico por imagem , Doença dos Neurônios Motores/genética , Progranulinas , Proteínas/genética , Psicometria , Índice de Gravidade de Doença , Proteínas tau/genética
18.
Neural Plast ; 2016: 6170509, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881123

RESUMO

The laying down of memory requires strong stimulation resulting in specific changes in synaptic strength and corresponding changes in size of dendritic spines. Strong stimuli can also be pathological, causing a homeostatic response, depressing and shrinking the synapse to prevent damage from too much Ca(2+) influx. But do all types of dendritic spines serve both of these apparently opposite functions? Using confocal microscopy in organotypic slices from mice expressing green fluorescent protein in hippocampal neurones, the size of individual spines along sections of dendrite has been tracked in response to application of tetraethylammonium. This strong stimulus would be expected to cause both a protective homeostatic response and long-term potentiation. We report separation of these functions, with spines of different sizes reacting differently to the same strong stimulus. The immediate shrinkage of large spines suggests a homeostatic protective response during the period of potential danger. In CA1, long-lasting growth of small spines subsequently occurs consolidating long-term potentiation but only after the large spines return to their original size. In contrast, small spines do not change in dentate gyrus where potentiation does not occur. The separation in time of these changes allows clear functional differentiation of spines of different sizes.


Assuntos
Espinhas Dendríticas/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Homeostase , Potenciação de Longa Duração , Células Piramidais/citologia , Células Piramidais/fisiologia , Animais , Células Cultivadas , Espinhas Dendríticas/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Células Piramidais/efeitos dos fármacos , Tetraetilamônio/farmacologia
19.
Mech Ageing Dev ; 134(9): 356-66, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23747814

RESUMO

Human ageing is associated with decreased cellular plasticity and adaptability. Changes in alternative splicing with advancing age have been reported in man, which may arise from age-related alterations in splicing factor expression. We determined whether the mRNA expression of key splicing factors differed with age, by microarray analysis in blood from two human populations and by qRT-PCR in senescent primary fibroblasts and endothelial cells. Potential regulators of splicing factor expression were investigated by siRNA analysis. Approximately one third of splicing factors demonstrated age-related transcript expression changes in two human populations. Ataxia Telangiectasia Mutated (ATM) transcript expression correlated with splicing factor expression in human microarray data. Senescent primary fibroblasts and endothelial cells also demonstrated alterations in splicing factor expression, and changes in alternative splicing. Targeted knockdown of the ATM gene in primary fibroblasts resulted in up-regulation of some age-responsive splicing factor transcripts. We conclude that isoform ratios and splicing factor expression alters with age in vivo and in vitro, and that ATM may have an inhibitory role on the expression of some splicing factors. These findings suggest for the first time that ATM, a core element in the DNA damage response, is a key regulator of the splicing machinery in man.


Assuntos
Envelhecimento , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Processamento Alternativo , Senescência Celular , Dano ao DNA , Fibroblastos/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1 , Humanos , Itália , México , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Processamento de Serina-Arginina , Adulto Jovem
20.
Mech Ageing Dev ; 133(8): 556-62, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22813852

RESUMO

Interventions which inhibit TOR activity (including rapamycin and caloric restriction) lead to downstream gene expression changes and increased lifespan in laboratory models. However, the role of mTOR signaling in human aging is unclear. We tested the expression of mTOR-related transcripts in two independent study cohorts; the InCHIANTI population study of aging and the San Antonio Family Heart Study (SAFHS). Expression of 27/56 (InCHIANTI) and 19/44 (SAFHS) genes were associated with age after correction for multiple testing. 8 genes were robustly associated with age in both cohorts. Genes involved in insulin signaling (PTEN, PI3K, PDK1), ribosomal biogenesis (S6K), lipid metabolism (SREBF1), cellular apoptosis (SGK1), angiogenesis (VEGFB), insulin production and sensitivity (FOXO), cellular stress response (HIF1A) and cytoskeletal remodeling (PKC) were inversely correlated with age, whereas genes relating to inhibition of ribosomal components (4EBP1) and inflammatory mediators (STAT3) were positively associated with age in one or both datasets. We conclude that the expression of mTOR-related transcripts is associated with advancing age in humans. Changes seen are broadly similar to mTOR inhibition interventions associated with increased lifespan in animals. Work is needed to establish whether these changes are predictive of human longevity and whether further mTOR inhibition would be beneficial in older people.


Assuntos
Apoptose/fisiologia , Regulação da Expressão Gênica/fisiologia , Metabolismo dos Lipídeos/fisiologia , Longevidade/fisiologia , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...