Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(1): e0272423, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38095474

RESUMO

IMPORTANCE: The capacity to utilize myo-inositol (MI) as sole carbon and energy source is widespread among bacteria, among them the intestinal pathogen S. Typhimurium. This study elucidates the complex and hierarchical regulation that underlies the utilization of MI by S. Typhimurium under substrate limitation. A total of seven regulatory factors have been identified so far, allowing the pathogen an environment-dependent, efficient, and fine-tuned regulation of a metabolic property that provides growth advantages in different environments.


Assuntos
Salmonella enterica , Salmonella enterica/metabolismo , Salmonella typhimurium/genética , Regiões Promotoras Genéticas , Proteínas de Bactérias/genética , Inositol/metabolismo , Redes e Vias Metabólicas , Regulação Bacteriana da Expressão Gênica
2.
J Bacteriol ; 203(5)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33288626

RESUMO

The Yersinia genus comprises pathogens that can adapt to an environmental life cycle stage as well as to mammals. Yersinia enterocolitica strain W22703 exhibits both insecticidal and nematocidal activity conferred by the tripartite toxin complex (Tc) that is encoded on the 19-kb pathogenicity island Tc-PAI Ye All tc genes follow a strict temperature regulation in that they are silenced at 37°C but activated at lower temperatures. Four highly conserved phage-related genes, located within the Tc-PAI Ye , were recently demonstrated to encode a biologically functional holin-endolysin gene cassette that lyses its own host W22703 at 37°C. Conditions transcriptionally activating the cassette are not yet known. In contrast to Escherichia coli, the overproduction of holin and endolysin did not result in cell lysis of strain W22703 at 15°C. When the holin-endolysin genes were overexpressed at 15°C in four Y. enterocolitica biovars and in four other Yersinia spp., a heterogenous pattern of phenotypes was observed, ranging from lysis resistance of a biovar 1A strain to the complete growth arrest of a Y. kristensenii strain. To decipher the molecular mechanism underlying this temperature-dependent lysis, we constructed a Lon protease-negative mutant of W22703 in which the overexpression of the lysis cassette leads to cell death at 15°C. Overexpressed endolysin exhibited a high proteolytic susceptibility in strain W22703 but remained stable in the W22703 Δlon strain or in Y. pseudotuberculosis Although artificial overexpression was applied here, the data indicate that Lon protease plays a role in the control of the temperature-dependent lysis in Y. enterocolitica W22703.IMPORTANCE The investigation of the mechanisms that help pathogens survive in the environment is a prerequisite to understanding their evolution and their virulence capacities. In members of the genus Yersinia, many factors involved in virulence, metabolism, motility, or biofilm formation follow a strict temperature-dependent regulation. While the molecular mechanisms underlying the activation of determinants at body temperature have been analyzed in detail, the molecular basis of low-temperature-dependent phenotypes is largely unknown. Here, we demonstrate that a novel phage-related lysis cassette, which is part of the insecticidal and nematocidal pathogenicity island of Y. enterocolitica, does not lyse its own host following overexpression at 15°C and that the Lon protease is involved in this phenotype.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriólise , Temperatura Baixa , Endopeptidases/metabolismo , Ilhas Genômicas , Protease La/metabolismo , Yersinia enterocolitica/patogenicidade , Animais , Caenorhabditis elegans/microbiologia , Sequência Conservada , Insetos/microbiologia , Virulência , Yersinia enterocolitica/enzimologia , Yersinia enterocolitica/genética
3.
Sci Rep ; 8(1): 17739, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30531898

RESUMO

Small noncoding RNAs (sRNAs) with putative regulatory functions in gene expression have been identified in the enteropathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). Two sRNAs are encoded by the genomic island GEI4417/4436 responsible for myo-inositol (MI) degradation, suggesting a role in the regulation of this metabolic pathway. We show that a lack of the sRNA STnc2160, termed RssR, results in a severe growth defect in minimal medium (MM) with MI. In contrast, the second sRNA STnc1740 was induced in the presence of glucose, and its overexpression slightly attenuated growth in the presence of MI. Constitutive expression of RssR led to an increased stability of the reiD mRNA, which encodes an activator of iol genes involved in MI utilization, via interaction with its 5'-UTR. SsrB, a response regulator contributing to the virulence properties of salmonellae, activated rssR transcription by binding the sRNA promoter. In addition, the absence of the RNA chaperone Hfq resulted in strongly decreased levels of RssR, attenuated S. Typhimurium growth with MI, and reduced expression of several iol genes required for MI degradation. Considered together, the extrinsic RssR allows fine regulation of cellular ReiD levels and thus of MI degradation by acting on the reiD mRNA stability.


Assuntos
Proteínas de Bactérias/genética , Inositol/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Salmonella enterica/genética , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Ilhas Genômicas/genética , Redes e Vias Metabólicas/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Salmonella typhimurium/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Virulência/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-30488025

RESUMO

The genus Yersinia comprises 19 species of which three are known as human and animal pathogens. Some species display toxicity toward invertebrates using the so-called toxin complex (TC) and/or determinants that are not yet known. Recent studies showed a remarkable variability of insecticidal activities when representatives of different Yersinia species (spp.) were subcutaneously injected into the greater wax moth, Galleria mellonella. Here, we demonstrate that Y. intermedia and Y. frederiksenii are highly toxic to this insect. A member of Y. Enterocolitica phylogroup 1B killed G. mellonella larvae with injection doses of approximately 38 cells only, thus resembling the insecticidal activity of Photorhabdus luminescens. The pathogenicity Yersinia spp. displays toward the larvae was higher at 15°C than at 30°C and independent of the TC. However, upon subtraction of all genes of the low-pathogenic Y. enterocolitica strain W22703 from the genomes of Y. intermedia and Y. frederiksenii, we identified a set of genes that may be responsible for the toxicity of these two species. Indeed, a mutant of Y. frederiksenii lacking yacT, a gene that encodes a protein similar to the heat-stable cytotonic enterotoxin (Ast) of Aeromonas hydrophila, exhibited a reduced pathogenicity toward G. mellonella larvae and altered the morphology of hemocytes. The data suggests that the repertoire of virulence determinants present in environmental Yersinia species remains to be elucidated.


Assuntos
Toxinas Bacterianas/toxicidade , Enterotoxinas/toxicidade , Yersiniose/microbiologia , Yersinia/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Enterotoxinas/genética , Genes Bacterianos/genética , Larva/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Mariposas/microbiologia , Mutação , Fenótipo , Photorhabdus , Temperatura , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/toxicidade , Yersinia/genética , Yersinia/patogenicidade
5.
J Bacteriol ; 200(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29866807

RESUMO

Yersinia enterocolitica is a pathogen that causes gastroenteritis in humans. Because of its low-temperature-dependent insecticidal activity, it can oscillate between invertebrates and mammals as host organisms. The insecticidal activity of strain W22703 is associated with a pathogenicity island of 19 kb (Tc-PAI Ye ), which carries regulators and genes encoding the toxin complex (Tc). The island also harbors four phage-related and highly conserved genes of unknown functions, which are polycistronically transcribed. Two open reading frames showed significant homologies to holins and endolysins and exhibited lytic activity in Escherichia coli cells upon overexpression. When a set of Yersinia strains was tested in an equivalent manner, highly diverse susceptibilities to lysis were observed, and some strains were resistant to lysis. If cell lysis occurred (as demonstrated by membrane staining), it was more pronounced when two accessory elements of the cassette coding for an i-spanin and an o-spanin were included in the overexpression construct. The pore-forming function of the putative holin, HolY, was demonstrated by complementation of the lysis defect of a phage λ S holin mutant. In experiments performed with membrane preparations, ElyY exhibited high specificity for W22703 peptidoglycan, with a cleavage activity resembling that of lysozyme. Although the functionality of the lysis cassette from Tc-PAI Ye was demonstrated in this study, its biological role remains to be elucidated.IMPORTANCE The knowledge of how pathogens survive in the environment is pivotal for our understanding of bacterial virulence. The insecticidal and nematocidal activity of Yersinia spp., by which the bacteria gain access to nutrients and thus improve their environmental fitness, is conferred by the toxin complex (Tc) encoded on a highly conserved pathogenicity island termed Tc-PAI Ye While the regulators and the toxin subunits of the island had been characterized in some detail, the role of phage-related genes within the island remained to be elucidated. Here, we demonstrate that this cassette encodes a holin, an endolysin, and two spanins that, at least upon overexpression, lyse Yersinia strains.


Assuntos
Endopeptidases/genética , Regulação Bacteriana da Expressão Gênica , Ilhas Genômicas , Proteínas Virais/genética , Yersinia enterocolitica/genética , Sequência de Aminoácidos , Bacteriófagos/genética , Fases de Leitura Aberta , Yersinia enterocolitica/patogenicidade
6.
Sci Rep ; 7: 44362, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28290506

RESUMO

Growth of Salmonella enterica serovar Typhimurium strain 14028 with myo-inositol (MI) is characterized by a bistable phenotype that manifests with an extraordinarily long (34 h) and variable lag phase. When cells were pre-grown in minimal medium with MI, however, the lag phase shortened drastically to eight hours, and to six hours in the absence of the regulator IolR. To unravel the molecular mechanism behind this phenomenon, we investigated this repressor in more detail. Flow cytometry analysis of the iolR promoter at a single cell level demonstrated bistability of its transcriptional activation. Electrophoretic mobility shift assays were used to narrow the potential binding region of IolR and identified at least two binding sites in most iol gene promoters. Surface plasmon resonance spectroscopy quantified IolR binding and indicated its putative oligomerization and high binding affinity towards specific iol gene promoters. In competitive assays, the iolR deletion mutant, in which iol gene repression is abolished, showed a severe growth disadvantage of ~15% relative to the parental strain in rich medium. We hypothesize that the strong repression of iol gene transcription is required to maintain a balance between metabolic flexibility and fitness costs, which follow the inopportune induction of an unusual metabolic pathway.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Inositol/farmacologia , Proteínas Repressoras/genética , Salmonella typhimurium/efeitos dos fármacos , Ativação Transcricional , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Meios de Cultura/química , Meios de Cultura/farmacologia , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Escherichia coli/metabolismo , Deleção de Genes , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Inositol/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Ressonância de Plasmônio de Superfície
7.
J Bacteriol ; 199(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27956522

RESUMO

Galactitol degradation by salmonellae remains underinvestigated, although this metabolic capability contributes to growth in animals (R. R. Chaudhuri et al., PLoS Genet 9:e1003456, 2013, https://doi.org/10.1371/journal.pgen.1003456). The genes responsible for this metabolic capability are part of a 9.6-kb gene cluster that spans from gatY to gatR (STM3253 to STM3262) and encodes a phosphotransferase system, four enzymes, and a transporter of the major facilitator superfamily. Genome comparison revealed the presence of this genetic determinant in nearly all Salmonella strains. The generation time of Salmonella enterica serovar Typhimurium strain ST4/74 was higher in minimal medium with galactitol than with glucose. Knockout of STM3254 and gatC resulted in a growth-deficient phenotype of S Typhimurium, with galactitol as the sole carbon source. Partial deletion of gatR strongly reduced the lag phase of growth with galactitol, whereas strains overproducing GatR exhibited a near-zero growth phenotype. Luciferase reporter assays demonstrated strong induction of the gatY and gatZ promoters, which control all genes of this cluster except gatR, in the presence of galactitol but not glucose. Purified GatR bound to these two main gat gene cluster promoters as well as to its own promoter, demonstrating that this autoregulated repressor controls galactitol degradation. Surface plasmon resonance spectroscopy revealed distinct binding properties of GatR toward the three promoters, resulting in a model of differential gat gene expression. The cyclic AMP receptor protein (CRP) bound these promoters with similarly high affinities, and a mutant lacking crp showed severe growth attenuation, demonstrating that galactitol utilization is subject to catabolite repression. Here, we provide the first genetic characterization of galactitol degradation in Salmonella, revealing novel insights into the regulation of this dissimilatory pathway. IMPORTANCE: The knowledge of how pathogens adapt their metabolism to the compartments encountered in hosts is pivotal to our understanding of bacterial infections. Recent research revealed that enteropathogens have adapted specific metabolic pathways that contribute to their virulence properties, for example, by helping to overcome limitations in nutrient availability in the gut due to colonization resistance. The capability of Salmonella enterica serovar Typhimurium to degrade galactitol has already been demonstrated to play a role in vivo, but it has not been investigated so far on the genetic level. To our knowledge, this is the first molecular description of the galactitol degradation pathway of a pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Galactitol/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular , DNA Bacteriano/genética , Família Multigênica , Regiões Promotoras Genéticas , Ligação Proteica , Salmonella typhimurium/genética
8.
Mol Microbiol ; 100(2): 315-27, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26699934

RESUMO

The nitrogen (N-) sources and the relative contribution of a nitrogenous nutrient to the N-pool of the gram-positive pathogen Listeria monocytogenes are largely unknown. Therefore, (15) N-isotopologue profiling was established to study the N-metabolism of L. monocytogenes. The pathogen was grown in a defined minimal medium supplemented with potential (15) N-labeled nutrients. The bacteria were harvested and hydrolysed under acidic conditions, and the resulting amino acids were analysed by GC-MS, revealing (15) N-enrichments and isotopomeric compositions of amino acids. The differential (15) N-profiles showed the substantial and simultaneous usage of ammonium, glutamine, methionine, and, to a lower extent, the branched-chain amino acids valine, leucine, and isoleucine for anabolic purposes, with a significant preference for ammonium. In contrast, arginine, histidine and cysteine were directly incorporated into proteins. L. monocytogenes is able to replace glutamine with ethanolamine or glucosamine as amino donors for feeding the core N-metabolism. Perturbations of N-fluxes caused by gene deletions demonstrate the involvement of ethanolamine ammonia lyase, and suggest a role of the regulator GlnK of L. monocytogenes distinct from that of Escherichia coli. The metabolism of nitrogenous nutrients reflects the high flexibility of this pathogenic bacterium in exploiting N-sources that could also be relevant for its proliferation during infection.


Assuntos
Listeria monocytogenes/metabolismo , Nitrogênio/metabolismo , Aminoácidos/metabolismo , Isoleucina/metabolismo , Leucina/metabolismo , Listeria/metabolismo , Isótopos de Nitrogênio/análise , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...