Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12685, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879382

RESUMO

Leg movements during sleep occur in patients with sleep pathology and healthy individuals. Some (but not all) leg movements during sleep are related to cortical arousals which occur without conscious awareness but have a significant effect of sleep fragmentation. Detecting leg movements during sleep that are associated with cortical arousals can provide unique insight into the nature and quality of sleep. In this study, a novel leg movement monitor that uses a unique capacitive displacement sensor and 6-axis inertial measurement unit, is used in conjunction with polysomnography to understand the relationship between leg movement and electroencephalogram (EEG) defined cortical arousals. In an approach that we call neuro-extremity analysis, directed connectivity metrics are used to interrogate causal linkages between EEG and leg movements measured by the leg movement sensors. The capacitive displacement measures were more closely related to EEG-defined cortical arousals than inertial measurements. Second, the neuro-extremity analysis reveals a temporally evolving connectivity pattern that is consistent with a model of cortical arousals in which brainstem dysfunction leads to near-instantaneous leg movements and a delayed, filtered signal to the cortex leading to the cortical arousal during sleep.


Assuntos
Perna (Membro) , Sono , Nível de Alerta , Eletroencefalografia , Humanos , Projetos Piloto , Polissonografia
2.
Sleep Breath ; 25(1): 373-379, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32451761

RESUMO

PURPOSE: Clinical and animal studies indicate frequent small micro-arousals (McA) fragment sleep leading to health complications. McA in humans is defined by changes in EEG and EMG during sleep. Complex EEG recordings during the night are usually required to detect McA-limiting large-scale, prospective studies on McA and their impact on health. Even with the use of EEG, reliably measuring McA can be difficult because of low inter-scorer reliability. Surrogate measures in place of EEG could provide easier and possibly more reliable measures of McA. These have usually involved measuring heart rate and arm movements. They have not provided a reliable measurement of McA in part because they cannot adequately detect short wake periods and periods of wake after sleep onset. Leg movements in sleep (LMS) offer an attractive alternative. LMS and cortical arousal, including McA, commonly occur together. Not all McA occur with LMS, but the most clinically significant ones may be those with LMS [1]. Conversely, most LMS do not occur with McA, but LMS vary considerably in their characteristics. Evaluating LMS characteristics may serve to identify the LMS associated with McA. The use of standard machine learning approaches seems appropriate for this particular task. This proof-of-concept pilot project aims to determine the feasibility of detecting McA from machine learning methods analyzing movement characteristics of the LMS. METHODS: This study uses a small but diverse group of subjects to provide a large variety of LMS and McA adequate for supervised machine learning. LMS measurements were obtained from a new advanced technology in the RestEaZe™ leg band that integrates gyroscope, accelerometer, and capacitance measurements. Eleven RestEaZe™ LMS features were selected for logistic regression analyses. RESULTS: With the optimum logit probability threshold selected, the system accurately detected 76% of the McA matching the accuracy of trained visual inter-scorer reliability (71-76%). The classifier provided a sensitivity of 76% and a specificity of 86% for the identification of the LMS with McA. The classifier identified regions in sleep with high versus low rates of LMS with McA, indicating possible areas of fragmented versus undisturbed restful sleep. CONCLUSION: These pilot data are encouraging as a preliminary proof-of-concept for using advanced machine learning analyses of LMS to identify sleep fragmented by McA.


Assuntos
Nível de Alerta , Perna (Membro) , Aprendizado de Máquina , Movimento , Adolescente , Adulto , Idoso , Eletroencefalografia , Eletromiografia , Humanos , Perna (Membro)/fisiologia , Masculino , Movimento/fisiologia , Projetos Piloto , Privação do Sono/diagnóstico , Privação do Sono/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...