Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 121(15): 9450-9501, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34213328

RESUMO

The structure, chemistry, and charge of interfaces between materials and aqueous fluids play a central role in determining properties and performance of numerous water systems. Sensors, membranes, sorbents, and heterogeneous catalysts almost uniformly rely on specific interactions between their surfaces and components dissolved or suspended in the water-and often the water molecules themselves-to detect and mitigate contaminants. Deleterious processes in these systems such as fouling, scaling (inorganic deposits), and corrosion are also governed by interfacial phenomena. Despite the importance of these interfaces, much remains to be learned about their multiscale interactions. Developing a deeper understanding of the molecular- and mesoscale phenomena at water/solid interfaces will be essential to driving innovation to address grand challenges in supplying sufficient fit-for-purpose water in the future. In this Review, we examine the current state of knowledge surrounding adsorption, reactivity, and transport in several key classes of water/solid interfaces, drawing on a synergistic combination of theory, simulation, and experiments, and provide an outlook for prioritizing strategic research directions.

2.
J Am Chem Soc ; 140(33): 10583-10592, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30071734

RESUMO

Continuous wave (CW) pump-probe surface-enhanced Raman spectroscopy (SERS) is used to examine a range of plasmon-driven chemical behavior in the molecular SERS signal of trans-1,2-bis(4-pyridyl)ethylene (BPE) adsorbed on individual Au nanosphere oligomers (viz., dimers, trimers, tetramers, etc.). Well-defined new transient modes are caused by high fluence CW pumping at 532 nm and are monitored on the seconds time scale using a low intensity CW probe field at 785 nm. Comparison of time-dependent density functional theory (TD-DFT) calculations with the experimental data leads to the conclusion that three independent chemical processes are operative: (1) plasmon-driven electron transfer to form the BPE anion radical; (2) BPE hopping between two adsorption sites; and (3) trans-to- cis-BPE isomerization. Resonance Raman and electron paramagnetic resonance (EPR) spectroscopy measurements provide further substantiation for the observation of an anion radical species formed via a plasmon-driven electron transfer reaction. Applications of these findings will greatly impact the design of novel plasmonic devices with the future ability to harness new and efficient energetic pathways for both chemical transformation and photocatalysis at the nanoscale level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...