Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Network ; : 1-27, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775271

RESUMO

Nowadays, Deep Learning (DL) techniques are being used to automate the identification and diagnosis of plant diseases, thereby enhancing global food security and enabling non-experts to detect these diseases. Among many DL techniques, a Deep Encoder-Decoder Cascaded Network (DEDCNet) model can precisely segment diseased areas from the leaf images to differentiate and classify multiple diseases. On the other hand, the model training depends on the appropriate selection of hyperparameters. Also, this network structure has weak robustness with different parameters. Hence, in this manuscript, an Optimized DEDCNet (ODEDCNet) model is proposed for improved leaf disease image segmentation. To choose the best DEDCNet hyperparameters, a brand-new Dingo Optimization Algorithm (DOA) is included in this model. The DOA depends on the foraging nature of dingoes, which comprises exploration and exploitation phases. In exploration, it attains many predictable decisions in the search area, whereas exploitation enables exploring the best decisions in a provided area. The segmentation accuracy is used as the fitness value of each dingo for hyperparameter selection. By configuring the chosen hyperparameters, the DEDCNet is trained to segment the leaf disease regions. The segmented images are further given to the pre-trained Convolutional Neural Networks (CNNs) followed by the Support Vector Machine (SVM) for classifying leaf diseases. ODEDCNet performs exceptionally well on the PlantVillage and Betel Leaf Image datasets, attaining an astounding 97.33% accuracy on the former and 97.42% accuracy on the latter. Both datasets achieve noteworthy recall, F-score, Dice coefficient, and precision values: the Betel Leaf Image dataset shows values of 97.4%, 97.29%, 97.35%, and 0.9897; the PlantVillage dataset shows values of 97.5%, 97.42%, 97.46%, and 0.9901, all completed in remarkably short processing times of 0.07 and 0.06 seconds, respectively. The achieved outcomes are evaluated with the contemporary optimization algorithms using the considered datasets to comprehend the efficiency of DOA.

2.
Network ; : 1-19, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38031802

RESUMO

Leaf infection detection and diagnosis at an earlier stage can improve agricultural output and reduce monetary costs. An inaccurate segmentation may degrade the accuracy of disease classification due to some different and complex leaf diseases. Also, the disease's adhesion and dimension can overlap, causing partial under-segmentation. Therefore, a novel robust Deep Encoder-Decoder Cascaded Network (DEDCNet) model is proposed in this manuscript for leaf image segmentation that precisely segments the diseased leaf spots and differentiates similar diseases. This model is comprised of an Infected Spot Recognition Network and an Infected Spot Segmentation Network. Initially, ISRN is designed by integrating cascaded CNN with a Feature Pyramid Pooling layer to identify the infected leaf spot and avoid an impact of background details. After that, the ISSN developed using an encoder-decoder network, which uses a multi-scale dilated convolution kernel to precisely segment the infected leaf spot. Moreover, the resultant leaf segments are provided to the pre-learned CNN models to learn texture features followed by the SVM algorithm to categorize leaf disease classes. The ODEDCNet delivers exceptional performance on both the Betel Leaf Image and PlantVillage datasets. On the Betel Leaf Image dataset, it achieves an accuracy of 94.89%, with high precision (94.35%), recall (94.77%), and F-score (94.56%), while maintaining low under-segmentation (6.2%) and over-segmentation rates (2.8%). It also achieves a remarkable Dice coefficient of 0.9822, all in just 0.10 seconds. On the PlantVillage dataset, the ODEDCNet outperforms other existing models with an accuracy of 96.5%, demonstrating high precision (96.61%), recall (96.5%), and F-score (96.56%). It excels in reducing under-segmentation to just 3.12% and over-segmentation to 2.56%. Furthermore, it achieves a Dice coefficient of 0.9834 in a mere 0.09 seconds. It evident for the greater efficiency on both segmentation and categorization of leaf diseases contrasted with the existing models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...