Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 342: 126021, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34600315

RESUMO

Microbial fermentation of organic matter under anaerobic conditions is currently the prominent pathway for biohydrogen production. Organic matter present in waste residues is regarded as an economic feedstock for biohydrogen production by dark and photo fermentative bacteria. Agricultural residues, fruit wastes, vegetable wastes, industrial wastewaters, and other livestock residues are some of the organic wastes most commonly used for biohydrogen production due to their higher organic content and biodegradability. Appropriate pretreatments are required to enhance the performance of biohydrogen from complex organic wastes. Biohydrogen production could also be enhanced by optimizing operation conditions and the addition of essential nutrients and nanoparticles. This review describes the pathways of biohydrogen production, discusses the effect of organic waste sources used and microbes involved on biohydrogen production, along with addressing the key parameters, advantages, and difficulties in each biohydrogen production pathway.


Assuntos
Hidrogênio , Águas Residuárias , Fermentação , Hidrogênio/análise
2.
J Hazard Mater ; 415: 125716, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088195

RESUMO

This study aims to reveal that the biosurfactant act as a stimulant in aromatic amine 4-Chloroaniline (4-CA) degradation. Isolated degrading strain Bacillus sp. was used for the production of biosurfactant with help of substrate such as engine oil. The surfactant production by the strain was studied by using various screening methods and the results showed best emulsification activity (75%), surface tension reduction activity (28.6 mNm-1) and oil spreading activity (5.9 cm). The obtained surfactant was characterized using Fourier transform infrared spectroscopy (FT-IR), Gas chromatography-Mass Spectrometry (GC-MS), Matrix-Assisted Laser Desorption/ Ionization Time of Flight (MALDI-TOF) which confirmed that the nature of surfactant is lipopeptide. The maximum removal of 4-CA was achieved in different environmental conditions at concentration 100 mg L-1, neutral pH and temperature 30 °C. In the degradation studies, the 4-CA was removed upto 76% by Bacillus sp but in the presence of lipopeptide surfactant, the Bacillus sp removed 4-CA upto 100%. The degraded metabolites were further characterized using High-Pressure Liquid Chromatography (HPLC) and GC-MS. This research indicated that strain Bacillus sp along with the lipopeptide biosurfactant possesses higher potential in the bioremediation of 4-CA compound from the environment.


Assuntos
Bacillus , Lipopeptídeos , Aminas , Compostos de Anilina , Biodegradação Ambiental , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos
3.
Chemosphere ; 272: 129806, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33601206

RESUMO

The objective of the current study was focused on the potential adsorption capability of a biogenic hydroxyapatite/iron nanoparticles-based composite tailored for the elimination of toxic pollutant, Cd(II) ions. Morphological along with physicochemical properties of composites were analyzed by different techniques including Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDAX), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR). It has been noticed an increase in cell parameters of prepared composites with an increase in the amount of nanoparticles. The best adsorbent was found to be the one with a 5% amount of nanoparticles (P400Fe(5%)). The kinetics studies have shown that the pseudo-first-order-models were in good agreement for the removal of Cd(II) ions onto P400Fe(5%) at any concentration, suggesting a physisorption mechanism. Besides, isotherms analysis has consistently revealed Freundlich as the model better explained the isotherm data, with a maximum removal capacity of 392.3 mg g-1, higher compared to many adsorbents. Thermodynamically, the removal adsorption process of Cd(II) ions onto the composite favorable, exothermic, and spontaneous. The regeneration study has been also investigated with reusability used until four cycles. The overall results pointed out the suitability and efficiency of the prepared biogenic composite for the elimination of metal pollutants in wastewater.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Adsorção , Animais , Cádmio , Bovinos , Concentração de Íons de Hidrogênio , Ferro , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 408: 124943, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33385730

RESUMO

The application of biosurfactants for the degradation of various toxic compounds has received much attention among researchers worldwide. A stimulated degrading method was carried out in this research to determine the efficiency of surfactant on the biodegradation of aromatic amine 4-Aminobiphenyl (4-ABP). The biosurfactant mediated process is an alternative strategy for chemical surfactants because chemical surfactants are toxic and nonbiodegradable. The bacterium was isolated through the enrichment process and identified using 16S rRNA sequencing method. The molecular characterization showed that the isolate belongs to Brevibacterium casei-4AB. Biosurfactant produced in this study was examined through screening activities like oil spreading, emulsification activity and surface tension measurement. Instrumental characterization like Fourier Transform Infrared Spectrophotometer (FT-IR) results suggested that there is a presence of NH group, aliphatic hydrocarbons, ester groups, amide and alkenes and further Gas chromatography- Mass Spectrometry (GC-MS) results confirmed the presence of fatty acids such as Hexadecanoic and Octadecadienoic acid which showed that the produced surfactant is lipopeptide. Protein content and lipid content in the biosurfactant was found to be 18 ± 0.8% and 30 ± 0.1%. The degraded metabolites of 4-ABP were analyzed through the GC-MS process which revealed the presence of metabolites such as 5-Amino-2-methoxy phenol.


Assuntos
Lipopeptídeos , Tensoativos , Aminas , Biodegradação Ambiental , Brevibacterium , RNA Ribossômico 16S/genética , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...