Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 50: 251-5, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23871873

RESUMO

Biochemical and biomedical applications of graphene are critically dependent on the interaction between biomolecules and the nanomaterial. In this work, we developed a graphene-based signal-amplification nanoprobe by combining anti-immunoglobulin G (anti-IgG) and horseradish peroxidase (HRP) with graphene oxide (GO). The structure and function of HRP in the nano-interface of GO were firstly investigated, which demonstrated that the enzyme retained 78% of its native activity and 77% of its native α-helix content. HRP and anti-IgG were then co-adsorbed onto GO to form bifunctional nanoprobes. The nanoprobes provide both improved binding ability and signal-amplification ability. Comparing with conventional bioconjugates such as enzyme-linked antibody, co-adsorption could avoid chemical conjugation between biomolecules, keeping their bioactivity well. As an example for their application, the nanoprobes were used to obtain amplified signals in a sandwich-type immunoassay for cancer marker, instead of conventional colorimetric conjugates. This approach provided a detection limit of 10 pg/mL alpha-fetoprotein (AFP), which was much more sensitive than conventional enzyme-linked immunosorbent assay (ELISA) methods. The easily fabricated GO-based nanoprobes have the potential to become universal probes for molecular diagnostics.


Assuntos
Técnicas Biossensoriais/métodos , Grafite/química , alfa-Fetoproteínas/análise , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/química , Humanos , Imunoensaio/métodos , Imunoglobulina G/imunologia , Limite de Detecção , Nanoestruturas/química , Neoplasias/diagnóstico , Óxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...