Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1356723, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835863

RESUMO

Fusarium crown rot (FCR) is an important and devastating disease of wheat (Triticum aestivum) caused by the fungus Fusarium pseudograminearum and related pathogens. Using two distinct susceptible cultivars, we investigated the isolation frequencies of F. pseudograminearum and quantified its biomass accumulation and the levels of the associated toxins deoxynivalenol (DON) and DON-3-glucoside (D3G) in inoculated field-grown wheat plants. We detected F. pseudograminearum in stem, peduncle, rachis, and husk tissues, but not in grains, whereas DON and D3G accumulated in stem, rachis, husk, and grain tissues. Disease severity was positively correlated with the frequency of pathogen isolation, F. pseudograminearum biomass, and mycotoxin levels. The amount of F. pseudograminearum biomass and mycotoxin contents in asymptomatic tissue of diseased plants were associated with the distance of the tissue from the diseased internode and the disease severity of the plant. Thus, apparently healthy tissue may harbor F. pseudograminearum and contain associated mycotoxins. This research helps clarify the relationship between F. pseudograminearum occurrence, F. pseudograminearum biomass, and mycotoxin accumulation in tissues of susceptible wheat cultivars with or without disease symptoms, providing information that can lead to more effective control measures.

2.
Molecules ; 28(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005361

RESUMO

Although a quadruple mass analyzer and an ion trap mass analyzer have complementary analytical features, they usually have different geometries, operational modes, and electronic control systems. As a continuous effort to extend its coverage, both quadrupole and ion trap operation modes were realized on a "brick" miniature mass spectrometer with a single mass analyzer. In the quadrupole operation mode, low-mass ions ranging from 31 to 502 Th can be analyzed. On the other hand, the ion trap mode can be utilized to cover ions with higher mass to charge ratios (up to 922 Th), as well as performing tandem mass spectrometry. To realize the multiplexing of both operation modes, a printed circuit board (PCB)-based multi-electrode quadrupole-ion trap mass analyzer was designed and integrated in the system. To cover both volatile and non-volatile molecules, two ionization sources were also implemented, including a nano electrospray ionization source and an in-vacuum plasma ionization source. Performances of the instrument operated in these two modes were characterized, such as mass resolution, sensitivity, and mass range. Results demonstrate that the combination of the quadrupole and ion trap operation modes can provide new capabilities when solving analytical problems.

3.
Front Microbiol ; 14: 1133025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077244

RESUMO

Chaetomium globosum is a common plant endophytic fungi that exhibits great biocontrol potential in plant disease. Fusarium crown rot (FCR) is an important disease in wheat that seriously threatens wheat production worldwide. The control effect of C. globosum against wheat FCR remains unclear. In this study, we introduced an identified C. globosum 12XP1-2-3 and tested its biological control potential against wheat FCR. The hypha and fermentation broth exhibited an antagonistic effect against Fusarium pseudograminearum. Results from indoor experiments showed that C. globosum 12XP1-2-3 might delay the onset of symptoms of brown stem base and significantly reduced the disease index (37.3%). Field trials showed that wheat seeds coated with a spore suspension of 12XP1-2-3 grew better than the control seeds, had control effects of 25.9-73.1% on FCR disease, and increased wheat yield by 3.2-11.9%. Analysis of rhizosphere microorganisms revealed that seeds coated with C. globosum ('Cg' treatment) had a greater effect on fungal rather than on bacterial alpha diversity and may improve the health state of rhizosphere microorganisms, as reflected by the significantly increased fungal Shannon index at Feekes 11 and the increased complexity of the bacterial co-occurrence network but decreased complexity of the fungal network. Moreover, the accumulation of beneficial bacteria such as Bacillus and Rhizobium at Feekes 3, and Sphingomonas at Feekes 7 in the 'Cg' treatment may be the important contributions to healthier wheat growth state, significantly reduced relative abundance of Fusarium at Feekes 11, and reduced occurrence of FCR disease. These results provide a basis for further research on the mechanism of action of C. globosum and its application in the biological control of FCR in the field.

4.
Plant Dis ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607328

RESUMO

Fusarium graminearum and F. asiaticum have been found as a major cause of Fusarium head blight (FHB) of wheat (Triticum aestivum L.), especially in Henan Province of China (Zhang et al. 2014; Xu et al. 2021). In May 2021, a survey to determine the composition of Fusarium species infecting wheat heads was conducted in commercial fields in Henan. A total of 395 diseased spikes with premature whitening symptom were collected from 31 commercial fields in Henan. Symptomatic spikelets were excised, surface-sterilized for 10 s in 70% ethanol followed by 1 min in 3% sodium hypochlorite, rinsed three times with autoclaved distilled water, and then plated onto potato dextrose agar (PDA) medium. Isolated colonies that resembled Fusarium species were transferred to fresh PDA plates and purified using a single spore method. Species were identified based on sequence analysis of the translation elongation factor-1α (TEF) and trichothecene 3-Oacetyltransferase (Tri 101) gene (Proctor et al. 2009). The results indicated that F. graminearum (43.3%), F. asiaticum (47.8%), F. pseudograminearum (6.6%) were the main causal agents of FHB in Henan. However, nine isolates (2.3%) were found to be identical to F. meridionale by sequence comparison in GenBank, and eight isolates of which came from three fields with 1% to 2% diseased spikes near Reservoir Luhun (34.1255° N, 112.1111° E, altitude: 388 m above sea level), Songxian County of Henan. The isolates of F. meridionale were transferred onto carnation leaf agar (CLA) and incubated at 20℃ under black light blue illumination. Macroconidia were abundant, relatively slender, curved to almost straight, commonly six- to seven-septate, and 27.0 to 61.0 (average 44.0) µm × 3.2 to 6.8 (average 5.3) µm. Microconidia were not observed. The TEF sequences (Accession nos. OM460748 to OM460756) and the Tri 101 sequences (OM460759 to OM460767) of the nine isolates showed 99 to 100% similarity with the TEF and Tri 101 sequences of F. meridionale NRRL 28436 and NRRL 28723 (AF212435 and AF212436 (TEF); AF212582 and AF212683 (Tri 101)). To complete Koch's postulates, the pathogenicity of the fungus was tested by using the single floret inoculation method by injecting 20-µl conidial suspension (5 × 105 conidia per milliliter) into healthy inflorescences of wheat cultivar Bainong 207 at anthesis in the field. Another 30 healthy inflorescences were injected with sterile distilled water. The heads were covered with polyethylene bags that were removed after 2 days. Twenty days after inoculation, while control inflorescences were asymptomatic, the F. meridionale-inoculated inflorescences showed 12% bleached spikelets per spike. By using the methodology described above, the fungus was re-isolated from infected spikelets of inoculated wheat heads but not from the controls. Although F. meridionale has frequently been reported in association with Fusarium ear rot (FER) of maize in Chongqing City and Gansu Province (Zhang et al. 2014; Zhou et al. 2018), and rice FER in Sichuan Province (Dong et al. 2020), to our knowledge, this is the first report of F. meridionale from diseased wheat heads in Henan, China. Further investigation is needed to gain a better understanding of this species by collecting isolates from different cropping system in Henan, which maize-wheat and rice-wheat rotation fields have coexisted in the region.

5.
Plant Dis ; 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471472

RESUMO

Soybean (Glycine max L.) is an important crop in China owing to its high oil and protein content, with approximately 9.88 million ha of production in 2020. In September 2021, soybean plants showing wilting, root necrosis, and brown discoloration were observed, with an average incidence of approximately 36% in seven fields in Yongcheng City and Shangqiu City, Henan, China. Fungi were isolated from small pieces of symptomatic root tissues after being surface-sterilized (70% ethanol for 50 s followed by 3% NaClO for 1.0 min), rinsed three times in sterile distilled water, and then placed on PDA and incubated at 25℃ for 5 days in the dark. Single-spore cultures of twenty isolates were obtained by dilution plating (Leslie and Summerell 2006), and then were cultured on carnation leaf agar at 25℃ for 14 days. Macroconidia were mostly 3-septate, hyaline, falcate, with slightly curved apexes, with well-developed foot cells and blunt apical cells, and measured 29.3 to 45.0 (average 34.7) µm × 4.6 to 8.0 (average 6.0) µm. Microconidia were one to two celled, hyaline, and measured 11.9 to 29.0 (average 20.1) µm × 3.9 to 7.6 (average 5.7) µm. These morphological characteristics were consistent with previous descriptions of the Fusarium solani species complex (FSSC) (Leslie and Summerell 2006; Summerell et al. 2003). Partial sequences of translation elongation factor-1α (TEF) and RNA polymerase II subunit (RPB2) gene were PCR amplified using region specific primers as described by O'Donnell et al. (2008). The nucleotide sequences obtained from twenty isolates were deposited in GenBank with accession numbers of ON375405-ON375423, ON697187 (TEF) and ON331917-ON331936 (RPB2). Phylogenetic analysis revealed the isolates were nested within F. falciforme based on the DNA sequences of the above two genes (Chitrampalam and Nelson 2016). Pathogenicity tests of two representative isolates (21BeanYC3-3 and 21BeanYC7-5) were performed on two-week-old healthy soybean seedlings (cv. Shengdou 101) by injecting and cutting root method with a conidial suspension (1×106 conidia per mL) of F. falciforme (2 mL to one seedling). Control seedlings were inoculated with 2 mL distilled water. After 40 days under 25℃, 16h light/8h dark, the root system of all inoculated soybean plants exhibited dark brown lesions over the entire taproot, while control plants remained healthy. The fungus was reisolated from inoculated plants and identified as F. falciforme based on morphological characteristics and molecular methods described above. To our knowledge, this is the first report of root rot in soybean (Glycine max L.) caused by F. falciforme in Henan, China. The results are important for soybean production and breeding programs.

6.
Mol Plant Microbe Interact ; 31(5): 516-524, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29199889

RESUMO

Plant viral diseases cause severe economic losses in agricultural production. The development of biosource-derived antiviral agents provides an alternative strategy to efficiently control plant viral diseases. We previously reported that the exogenous application of polysaccharide peptide (PSP) exerts significant inhibitive effects on Tobacco mosaic virus infection in Nicotiana tabacum. In this study, we studied in additional detail the mechanism by which PSP can induce virus resistance in Arabidopsis thaliana. We found that PSP significantly induced Ca2+ influx and increased the accumulation of hydrogen peroxide and salicylic acid (SA) in the A. thaliana cells. A gene with a toll interleukin 1 receptor-nucleotide binding site-leucine-rich repeat domain (LRR) was obtained by RNA sequencing in combination with the screening of the gene-deletion mutants of A. thaliana. The LRR gene was deleted, and the inductive response of A. thaliana to PSP was significantly attenuated after mutation. After the heterologous overexpression of the LRR gene in N. benthamiana, the SA content and PR1 gene expression in N. benthamiana were significantly increased. Through analyses of the LRR gene expression and the ability of A. thaliana to resist Cucumber mosaic virus following the treatments of PSP and PSP + ethyleneglycol-bis (beta-aminoethylether)-N,N'-tetraacetic acid, it was shown that PSP enhanced the virus resistance of A. thaliana by inducing Ca2+ influx and subsequently improving expression of the LRR gene, which further increased the SA content.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Cucumovirus/imunologia , Proteoglicanas , Ácido Salicílico/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Regulação para Cima
7.
Pestic Biochem Physiol ; 135: 15-26, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28043326

RESUMO

Plant virus diseases, known as 'plant cancer', are the second largest plant diseases after plant fungal diseases, which have caused great damage to agricultural industry. Since now, the most direct and effective method for controlling viruses is chemotherapeutics, except for screening of anti-disease species. As the occurrence and harm of plant diseases intensify, production and consumption of pesticides have increased year by year, and greatly contributed to the fertility of agriculture, but also brought a series of problems, such as the increase of drug resistance of plant pathogens and the excessive pesticide residues. In recent years, biopesticide, as characterized by environmentally safe due to low residual, safe to non-target organism due to better specificity and not as susceptible to produce drug resistance due to diverse work ways, has gained more attention than ever before and exhibited great development potential. Now much progress has been made about researches on new biogenic anti-plant-virus substances. The types of active components include proteins, polysaccharides and small molecules (alkaloids, flavonoids, phenols, essential oils) from plants, proteins and polysaccharides from microorganisms, polysaccharides from algae and oligochitosan from animals. This study summarized the research advance of biogenic anti-plant-virus substances in recent years and put forward their further development in the future.


Assuntos
Antivirais/farmacologia , Vírus de Plantas/efeitos dos fármacos , Animais , Bactérias/química , Fungos/química , Compostos Fitoquímicos/farmacologia , Preparações de Plantas/química , Proteínas de Plantas , Plantas/química
8.
J Biotechnol ; 214: 182-91, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26432336

RESUMO

A droplet-vitrification procedure is described for cryopreservation of Malus shoot tips. Survival patterns, recovery types, histological observations, and genetic integrity were compared for Malus shoot tips cryopreserved using this droplet-vitrification procedure and an encapsulation-dehydration procedure that was previously reported by us. In both procedures, three types of shoot tip recovery were observed following cryopreservation: callus formation without shoot regrowth, leaf formation without shoot regrowth, and shoot regrowth. Three categories of histological observations were also identified in cross-sections of shoot tips recovered after cryopreservation using the two cryogenic procedures. In category 1, almost all of the cells (94-95%) in the apical dome (AD) were damaged or killed and only some cells (30-32%) in the leaf primordia (LPs) survived. In category 2, only a few cells (18-20%) in the AD and some cells (30-31%) in the LPs survived. In category 3, majority of the cells (60-62%) in the AD and some cells (30-33%) in the LPs survived. These data suggest that shoot regrowth is correlated to the presence of a majority of surviving cells in the AD after liquid nitrogen exposure. No polymorphic bands were detected by inter-simple sequence repeats or by random amplified polymorphic DNA assessments, and ploidy levels analyzed by flow cytometry were unchanged when plants recovered after cryoexposure were compared to controls. The droplet-vitrification procedure appears to be robust since seven genotypes representing four Malus species and one hybrid recovered shoots following cryopreservation. Mean shoot regrowth levels of these seven genotypes were 48% in the droplet-vitrification method, which were lower than those (61%) in the encapsulation-dehydration procedure reported in our previous study, suggesting the latter may be preferred for routine cryobanking applications for Malus shoot tips.


Assuntos
Criopreservação/métodos , Dessecação/métodos , Malus/citologia , Malus/fisiologia , Brotos de Planta/citologia , Brotos de Planta/fisiologia , DNA de Plantas/análise , DNA de Plantas/genética , Malus/genética , Vitrificação
9.
PLoS One ; 10(2): e0117496, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25705894

RESUMO

A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV), Rice stripe virus (RSV) and Southern rice black streaked dwarf virus (SRBSDV). Gossypol and ß-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR) assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future.


Assuntos
Acetona/química , Antivirais/farmacologia , Óleo de Sementes de Algodão/química , Extratos Vegetais/farmacologia , Vírus de Plantas/efeitos dos fármacos
10.
Methods Mol Biol ; 11013: 463-82, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23179720

RESUMO

Horticultural crops are economically valuable for sustainable agricultural production. Plant diseases caused by Pathogens including virus, phytoplasma and bacterium have been a great threat to production of horticultural crops. The efficient use of pathogen-free plant materials has overcome the menace of plant diseases and has sustained crop production. Cryotherapy of shoot tips, a novel application of cryopreservation technique, has become a new plant biotechnology tool for plant pathogen eradication. When compared with the traditional methods, cryotherapy of shoot tips produces high frequency of pathogen-free plants, which is independent of shoot tip size and cryogenic methods. Cryotherapy of shoot tips has six major steps to produce pathogen-free plants: (1) introduction of infected plant materials into in vitro cultures; (2) excision of shoot tips; (3) cryotherapy; (4) post-culture for plant regeneration; (5) indexing of pathogens in regenerated plants after cryotherapy; and (6) establishment of pathogen-free nuclear stock plants. The key steps 2, 3, and 4 are similar to cryopreservation, and play a major role in obtaining high pathogen eradication frequency.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Técnicas de Cultura/métodos , Brotos de Planta/crescimento & desenvolvimento , Temperatura , Produtos Agrícolas/microbiologia , Produtos Agrícolas/fisiologia , Produtos Agrícolas/virologia , Meios de Cultura/química , Brotos de Planta/microbiologia , Brotos de Planta/fisiologia , Brotos de Planta/virologia , Vírus de Plantas/fisiologia , Regeneração
11.
Biotechnol Adv ; 30(3): 604-12, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22079800

RESUMO

The world population now is 6.7 billion and is predicted to reach 9 billion by 2050. Such a rapid growing population has tremendously increased the challenge for food security. Obviously, it is impossible for traditional agriculture to ensure the food security, while plant biotechnology offers considerable potential to realize this goal. Over the last 15 years, great benefits have been brought to sustainable agriculture by commercial cultivation of genetically modified (GM) crops. Further development of new GM crops will with no doubt contribute to meeting the requirements for food by the increasing population. The present article provides updated comprehensive information on novel and potential application of cryopreservation to genetic transformation. The major progresses that have been achieved in this subject include (1), long-term storage of a large number of valuable plant genes, which offers a good potential for further development of novel cultivars by genetic transformation; (2), retention of regenerative capacity of embryogenic tissues and protoplasts, which ensures efficient plant regeneration system for genetic transformation; (3), improvement of transformation efficiency and plant regeneration of transformed cells; (4), long-term preservation of transgenic materials with stable expression of transgenes and productive ability of recombinant proteins, which allows transgenic materials to be stored in a safe manner before being analyzed and evaluated, and allows establishment of stable seed stocks for commercial production of homologous proteins. Data provided in this article clearly demonstrate that cryo-technique has an important role to play in the whole chain of genetic transformation. Further studies coupling cryotechnique and genetic transformation are expected to significantly improve development of new GM crops.


Assuntos
Produtos Agrícolas/genética , Criopreservação/métodos , Genes de Plantas , Plantas Geneticamente Modificadas , Técnicas de Cultura de Células , Produtos Agrícolas/classificação , Produtos Agrícolas/embriologia , Humanos , Protoplastos/citologia
12.
Biotechnol Adv ; 29(1): 84-93, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20851757

RESUMO

Sweetpotato (Ipomoea batatas) ranks as the seventh most important staple crop in the world and the fifth in developing countries after rice, wheat, maize and cassava. Sweetpotato is mainly grown in developing countries, which account for more than 95% of total production of the whole world. Genetic resources, including cultivated varieties and wild species, are a prerequisite for novel sweetpotato breeding in both conventional and genetic engineering programs. Various cryopreservation protocols have been developed for shoot tips and embryogenic tissues. The former explants are preferred for long-term conservation of sweetpotato genetic resources, while the latter are valuable for sweetpotato genetic improvement. This review provides update comprehensive information on cryopreservation of sweetpotato shoot tips and embryogenic tissues. Plant pathogens such as viruses and phytoplasma severely hamper high yield and high quality production of sweetpotato. Thus, usage of pathogen-free planting materials is pivotal for sustainable sweetpotato production. Cryotherapy of shoot tips can efficiently eradicate sweetpotato pathogens such as viruses and phytoplasma. The mechanism behind pathogen eradication by cryotherapy of shoot tips has been elucidated. Pathogen eradication by cryotherapy provides an alternative, efficient strategy for production of pathogen-free plants. In addition, cryopreserved tissues may also be considered to be safer for exchange of germplasm between countries and regions.


Assuntos
Temperatura Baixa , Criopreservação/métodos , Crioterapia/métodos , Ipomoea batatas/microbiologia , Ipomoea batatas/virologia , Doenças das Plantas/terapia , Ipomoea batatas/embriologia , Phytoplasma/isolamento & purificação , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Brotos de Planta/fisiologia , Vírus de Plantas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...