Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 358: 142220, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710410

RESUMO

Microplastics have become a prevalent environmental pollutant due to widespread release and production. Algae, as primary producers, play a crucial role in maintaining the ecological balance of freshwater environments. Despite reports on the inhibition of microalgae by microplastics, the size-dependent effects on microalgae and associated molecular mechanism remain poorly understood. This study investigates the impacts of three polystyrene micro/nano-plastics (PS-MNPs) with different sizes (100 nm, 350 nm, and 6 µm) and concentrations (25-200 mg/L) on Chlamydomonas reinhardtii (C. reinhardtii) throughout its growth period. Results reveal size- and concentration-dependent growth inhibition and induction of oxidative stress by PS-MNPs, with microalgae exhibiting increased vulnerability to smaller-sized and higher-concentration PS-MNPs. Proteomics analysis elucidates the size-dependent suppression of proteins involved in the photosynthesis process by PS-MNPs. Photosynthetic activity assays demonstrate that smaller PS-MNPs more significantly reduce chlorophyll content and the maximal photochemical efficiency of photosystem II. Finally, electron microscope and Western blot assays collectively confirm the size effect of PS-MNPs on microalgae growth is attributable to suppressed protein expression rather than shading effects. This study contributes to advancing our understanding of the intricate interactions between micro/nano-plastics and algae at the molecular level, emphasizing the efficacy of proteomics in dissecting the mechanistic aspects of microplastics-induced biological effects on environmental indicator organisms.


Assuntos
Chlamydomonas reinhardtii , Microplásticos , Fotossíntese , Poliestirenos , Proteômica , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Poliestirenos/toxicidade , Poliestirenos/química , Microplásticos/toxicidade , Fotossíntese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Clorofila/metabolismo , Poluentes Químicos da Água/toxicidade , Microalgas/efeitos dos fármacos , Plásticos/toxicidade , Tamanho da Partícula , Complexo de Proteína do Fotossistema II/metabolismo
2.
Environ Int ; 185: 108543, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452464

RESUMO

Exposure to environmentally hazardous substances is recognized as a significant risk factor for neurological associated disorders. Among these substances, polystyrene microplastics (PS-MPs), widely utilized in various consumer products, have been reported to exhibit neurotoxicity. However, the potential association of PS-MPs with abnormal anxiety behaviors, along with the underlying molecular mechanisms and key proteins involved, remains insufficiently explored. Here, we delineated the potential mechanisms of PS-MPs-induced anxiety through proteomics and molecular investigations. We characterized the PS-MPs, observed their accumulation in the brain, leading to anxiety-like behavior in mice, which is correlated with microglia activation and pro-inflammatory response. Consistent with these findings, our studies on BV2 microglia cells showed that PS-MPs activated NF-κB-mediated inflammation resulting in the upregulation of pro-inflammatory cytokines such as TNFα and IL-1ß. Of particular significance, HRAS was identified as a key factor in the PS-MPs induced pro-inflammatory response through whole proteomics analysis, and knockdown of H-ras effectively inhibited PS-MPs induced PERK-NF-κB activation and associated pro-inflammatory response in microglia cells. Collectively, our findings highlight that PS-MPs induce anxiety of mice via the activation of the HRAS-derived PERK-NF-κB pathway in microlglia. Our results contribute valuable insights into the molecular mechanisms of PS-MPs-induced anxiety, and may offer implications for addressing neurotoxicity and prevention the adverse effects of environmentally hazardous substances, including microplastics.


Assuntos
NF-kappa B , Síndromes Neurotóxicas , Animais , Camundongos , Ansiedade/induzido quimicamente , Substâncias Perigosas , Microplásticos/toxicidade , Plásticos , Poliestirenos/toxicidade
3.
J Ethnopharmacol ; 304: 116046, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36567042

RESUMO

ETHNOPHARMACOLOGICAL RELEVANT: Erxian Decoction (EXD) has been used empirically for more than 70 years to treat premature ovarian failure (POF), but more research is needed to understand how it works. AIM OF THE RESEARCH: The study aims to ascertain both in vivo and in vitro rewards of EXD. MATERIALS AND METHODS: EXD is composed of Curculiginis Rhizoma, Epimedii Folium, Morindae Officinalis, Angelicae Sinensis, Anemarrhenae Rhizoma, and Phellodendri Chinensis Cortex. UPLC/MS analysis was used to investigate the components of EXD. Using a POF model created by administering cisplatin to rats intraperitoneally, the pharmacodynamic effects of EXD were investigated. Three dose groups of EXD were garaged into rats: high (15.6 g/kg), medium (7.8 g/kg), and low (3.9 g/kg). By using a vaginal smear, the impact of EXD on the rat estrous cycle was evaluated. An ELISA test was used to measure the anti-Mullerian hormone (AMH), estradiol (E2), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels in the serum of rats. By using HE stains, pathological alterations in the ovaries may be seen. MDA and SOD levels in ovarian samples were used to measure the degree of ovarian oxidation. TUNEL labeling of ovarian sections was used to find apoptosis levels. By using ATP, energy production was evaluated. The relative expression of proteins connected to aging and the RAGE pathway was assessed using Western blot. Then, using H2O2, a model of senescent human ovarian granulosa cells (KGN) was created in vitro. The impact of EXD and H2O2 on cellular senescence was discovered using-galactosidase staining. Cell apoptosis levels were found using PI/Hoechest33342. By using DCFH-DA, intracellular ROS was examined. MDA and SOD concentrations were used to measure the degree of cellular oxidation. RAGE-related mRNA and protein expression were evaluated using RT-qPCR and western blotting. RESULTS: Using UPLC/MS analysis, 39 chemicals in EXD were found. Rats' estrous cycles were enhanced by EXD, which increased ovarian index and follicle count and reduced the proportion of atretic follicles in the rats. EXD reduced LH and FSH output while restoring AMH and E2 secretion. In ovarian tissues, EXD reduced the amount of apoptosis and MDA while raising SOD activity and ATP levels. The protein levels of p16, p21, p53, and Lamin A/C were among the senescence-related proteins that EXD lowered, along with the levels of RAGE, PI3K, BAX, and CASPASE 3. Anti-apoptotic protein BCL-2 was also raised in the RAGE pathway. Senescence, apoptosis, ROS, and MDA levels in the KGN cells were lowered in vitro by EXD. Additionally, EXD increased the anti-apoptotic potential by changing the expression of CAT, SOD2, and SIRT1. RAGE, BAX, BCL-2, CASPASE 3, and p38 expression levels were altered by EXD, enhancing its anti-apoptotic capability. CONCLUSION: EXD boosted the ovary's antioxidant and anti-apoptotic capabilities while enhancing the estrous cycle and hormone output. These findings strongly suggested that EXD may contribute to the alleviation of POF and ovarian granulosa cells senescence.


Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Ratos , Trifosfato de Adenosina/metabolismo , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Cisplatino/efeitos adversos , Medicamentos de Ervas Chinesas/uso terapêutico , Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/metabolismo , Peróxido de Hidrogênio/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/tratamento farmacológico , Insuficiência Ovariana Primária/patologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
4.
Front Pharmacol ; 13: 967164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059943

RESUMO

Shaogan Fuzi Decoction (SGFD), one of the classical prescriptions of Chinese Medicine, has a long history in the treatment of rheumatoid arthritis (RA), but definitive studies on its efficacy and mechanism of action are lacking. This study aims to elucidate the pharmacodynamic role of SGFD against RA and the potential mechanisms based on a combination of network pharmacology and experimental verification. The RA model in rats was induced by intradermal injection of bovine type Ⅱ collagen and incomplete Freund's adjuvant at the tail root. SGFD was administered once a day by oral gavage for 4 weeks. After SGFD administration, rat's arthritis index (AI) score and paw swelling decreased to some extent, and synovial inflammation, vascular hyperplasia, and cartilage destruction of the ankle joint were improved. Simultaneously, thymus and spleen index and serum levels of C-reactive protein (CRP) were lowered. Network pharmacology revealed that quercetin, kaempferol, naringenin, formononetin isorhamnetin and licochalcone A were the potentialiy active components, and IL6, TP53, TNF, PTGS2, MAPK3 and IL-1ß were potential key targets for SGFD in the treatment of RA. Ingredients-targets molecular docking showed that the components had the high binding activity to these target proteins. The mechanism of SGFD for RA involves various biological functions and is closely correlated with TNF signaling pathway, Osteoclast differentiation, T cell receptor signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, NF-κB signaling pathway, toll-like receptor signaling pathway, and so on. Western blot and ELISA showed that the expression of toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB) p65, phosphorylated c-Jun N-terminal kinase (p-JNK), p-p38, phosphorylated extracellular regulated kinase (p-ERK) and TNF-α was significantly upregulated in the synovium of RA rats, and the levels of serum inflammatory factors were significantly increased. SGFD inhibits the activation of the TLR4/NF-κB/MAPK pathway and the expression/production of pro-inflammatory cytokines. In summary, SGFD could improve the symptoms and inflammatory response in collagen-induced arthritis (CIA) rat model. The mechanism might be related to the regulation of TLR4/MAPKs/NF-κB signaling pathway and the reduction of inflammatory factor release, which partially confirms the results predicted by network pharmacology.

5.
Front Pharmacol ; 13: 1011751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699060

RESUMO

Background: Guishaozichuan (GSZC) granules are a traditional Chinese medicine formulation created by Professor Li (Chinese-Japanese Friendship Hospital, Beijing, China) we studied the effect of GSZC granules in rats suffering from asthma. Methods: Specific pathogen-free Sprague-Dawley rats were divided randomly into seven groups. Ovalbumin (OVA) and Al (OH)3 gel were used to create an asthma model. On day 1, rats were injected with OVA (10 mg) and an Al(OH)3 gel suspension (100 mg). One week later, rats were sensitized again. On day 15, rats were given aerosolized OVA (1%) for 30 min/day for 10 days. Gastric administration of OVA was 1 h before nebulization. At 24 h after the last stimulation, changes in airway resistance (RI) and dynamic compliance (Cdyn) in rat lungs were measured after challenge with methacholine at increasing concentrations. The contents of immunoglobulin (Ig)E, interleukin (IL)-4, IL-5, IL-13, and IL-17 in serum were measured by enzyme-linked immunosorbent assays. The percentage of eosinophils (EOS) and the white blood cell (WBC) count in bronchoalveolar lavage fluid (BALF) were counted under an optical microscope. Pathologic alterations in lung tissue were evaluated by optical microscopy, and lung injury score calculated. Expression of mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) and epidermal growth factor receptor (EGFR) in lung tissue was measured by immunohistochemistry. mRNA expression of MUC5AC and EGFR in lung tissue was measured by real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results: GSZC granules reduced RI markedly and improved Cdyn, decreased serum levels of IgE, IL-4, IL-5, IL-13, IL-17, %EOS and the WBC count in BALF. GSZC granules alleviated lung-tissue damage, diminished the Inflammation Score, and reduced mRNA and protein expression of MUC5AC and EGFR in lung tissue. Conclusion: GSZC granules could improve bronchial hyperresponsiveness, bronchial inflammation, and histopathologic damage in the lungs of rats suffering from asthma. This phenomenon may be related to its regulation of cytokine levels and the MUC5AC/EGFR signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...