Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 8: 23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941639

RESUMO

The research on staging of pre-symptomatic and prodromal phase of neurological disorders, e.g., Alzheimer's disease (AD), is essential for prevention of dementia. New strategies for AD staging with a focus on early detection, are demanded to optimize potential efficacy of disease-modifying therapies that can halt or slow the disease progression. Recently, neuroimaging are increasingly used as additional research-based markers to detect AD onset and predict conversion of MCI and normal control (NC) to AD. Researchers have proposed a variety of neuroimaging biomarkers to characterize the patterns of the pathology of AD and MCI, and suggested that multi-view neuroimaging biomarkers could lead to better performance than single-view biomarkers in AD staging. However, it is still unclear what leads to such synergy and how to preserve or maximize. In an attempt to answer these questions, we proposed a cross-view pattern analysis framework for investigating the synergy between different neuroimaging biomarkers. We quantitatively analyzed nine types of biomarkers derived from FDG-PET and T1-MRI, and evaluated their performance in a task of classifying AD, MCI, and NC subjects obtained from the ADNI baseline cohort. The experiment results showed that these biomarkers could depict the pathology of AD from different perspectives, and output distinct patterns that are significantly associated with the disease progression. Most importantly, we found that these features could be separated into clusters, each depicting a particular aspect; and the inter-cluster features could always achieve better performance than the intra-cluster features in AD staging.

2.
IEEE Trans Biomed Eng ; 61(4): 1155-66, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24658240

RESUMO

In this paper, we propose a novel classification method for the four types of lung nodules, i.e., well-circumscribed, vascularized, juxta-pleural, and pleural-tail, in low dose computed tomography scans. The proposed method is based on contextual analysis by combining the lung nodule and surrounding anatomical structures, and has three main stages: an adaptive patch-based division is used to construct concentric multilevel partition; then, a new feature set is designed to incorporate intensity, texture, and gradient information for image patch feature description, and then a contextual latent semantic analysis-based classifier is designed to calculate the probabilistic estimations for the relevant images. Our proposed method was evaluated on a publicly available dataset and clearly demonstrated promising classification performance.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/classificação , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Radiografia , Semântica , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA