Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37106633

RESUMO

Poly(3-hydroxybutyrate-co-3-hydroxypropionate) [P(3HB-co-3HP)] is a biodegradable and biocompatible polyester with improved and expanded material properties compared with poly(3-hydroxybutyrate) (PHB). This study engineered a robust malonyl-CoA pathway in Cupriavidus necator for the efficient supply of a 3HP monomer, and could achieve the production of [P(3HB-co-3HP)] from variable oil substrates. Flask level experiments followed by product purification and characterization found the optimal fermentation condition (soybean oil as carbon source, 0.5 g/L arabinose as induction level) in general consideration of the PHA content, PHA titer and 3HP molar fraction. A 5 L fed-batch fermentation (72 h) further increased the dry cell weight (DCW) to 6.08 g/L, the titer of [P(3HB-co-3HP)] to 3.11 g/L and the 3HP molar fraction to 32.25%. Further improving the 3HP molar fraction by increasing arabinose induction failed as the engineered malonyl-CoA pathway was not properly expressed under the high-level induction condition. With several promising advantages (broader range of economic oil substrates, no need for expensive supplementations such as alanine and VB12), this study indicated a candidate route for the industrial level production of [P(3HB-co-3HP)]. For future prospects, further studies are needed to further improve the strain and the fermentation process and expand the range of relative products.

2.
Crit Rev Biotechnol ; 43(4): 503-520, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35430940

RESUMO

Chemical resources and techniques have long been used in the history of bulk polyester production and still dominate today's chemical industry. The sustainable development of the polyester industry demands more renewable resources and environmentally benign polyester products. Accordingly, the rapid development of biotechnology has enabled the production of an extensive range of aliphatic and aromatic polyesters from renewable bio-feedstocks. This review addresses the production of representative commercial polyesters (polyhydroxyalkanoates, polylactic acid, poly ε-caprolactone, polybutylene succinate, polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, polyethylene furandicarboxylate, polypropylene furandicarboxylate, and polybutylene furandicarboxylate) or their monomers (lactic acid, succinic acid, 1,4-butanediol, ethylene glycol, terephthalic acid, 1,3-propanediol, and 2,5-furandicarboxylic acid) from renewable bioresources. In addition, this review summarizes advanced biotechniques in the treatment of polyester wastes, representing the near-term trends and future opportunities for waste-to-value recycling and the remediation of polyester wastes under sustainable models. For future prospects, it is essential to further expand: non-food bioresources, optimize bioprocesses and biotechniques in the preparation of bioderived or biodegradable polyesters with promising: material performance, biodegradability, and low production cost.


Assuntos
Poli-Hidroxialcanoatos , Polipropilenos , Poliésteres , Biotecnologia/métodos , Ácido Láctico
3.
J Mol Model ; 29(1): 30, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36585991

RESUMO

CONTEXT: Isomerization processes between glucose and fructose catalyzed by four different organic ligands are investigated with quantum chemistry methods in this study. These organic ligands are the carboxylic pendant group, sulfonic pendant group, amino pendant group, and 1H-imidazole ligand. After guessing and verifying a variety of elementary reactions, transition states and energy barriers that are relevant to the optimum pathways have been confirmed. The effective barriers under the catalysis of the carboxylic pendant group, sulfonic pendant group, amino pendant group, and 1H-imidazole ligand are 97.5 kJ mol-1, 134.7 kJ mol-1, 146.7 kJ mol-1, and 167.7 kJ mol-1, respectively. Then, based on the conclusions of the non-solvation model, the effective barriers in solvents are briefly investigated. The implicit model predicts that solvents bring little improvement or setback to catalyzed reaction models. The explicit model shows that the proton transfer with the participant of water molecules can improve the catalytic performance of Lewis bases in these reactions. The detailed reaction mechanism combing and reliable reaction templates provided in this work will be useful for catalysis designs for glucose transformation to fructose. METHODS: This work used the computational level of ωB97M-D3BJ/def2-SVP and the software package of ORCA 4.2. For solvent effects, energies of the gas phase were corrected by the combination of C-PCM and SMD.


Assuntos
Frutose , Glucose , Humanos , Isomerismo , Glucose/química , Frutose/química , Ligantes , Solventes/química , Imidazóis , Catálise
4.
J Agric Food Chem ; 70(1): 238-246, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34965133

RESUMO

2-Acetamidophenol (AAP) is an aromatic product with promising activities in agricultural applications and medical research. At present, AAP is synthesized by chemical methods from nonrenewable fossil fuel resources, which cause environmental pollution and the reaction conditions are harsh. In this study, we constructed the artificial biosynthetic pathway of AAP with five different expressed proteins in Escherichia coli for the first time. By introducing the hydrogen peroxide degrading enzyme catalase and improving cell tolerance to toxic intermediates or products, the yield of AAP reached 33.54 mg/L using shaking-flask culture. The best-engineered strain could produce 568.57 mg/L AAP by fed-batch fermentation from glucose and precursor (2-aminophenol, 2-AP) addition. Furthermore, a one-pot whole-cell cascade biocatalytic pathway to AAP and analogues was developed and optimized. This method can efficiently produce 1.8 g/L AAP using the methyl anthranilate hydrolysis product as the substrate. This study provides not only the de novo artificial biosynthetic pathway of AAP in E. coli but also a promising sustainable and efficient strategy to enable the synthesis of AAP on a gram scale.


Assuntos
Escherichia coli , Engenharia Metabólica , Acetaminofen , Técnicas de Cultura Celular por Lotes , Vias Biossintéticas , Escherichia coli/genética , Fermentação
5.
Molecules ; 26(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885764

RESUMO

Lactate and isoprene are two common monomers for the industrial production of polyesters and synthetic rubbers. The present study tested the co-production of D-lactate and isoprene by engineered Escherichia coli in microaerobic conditions. The deletion of alcohol dehydrogenase (adhE) and acetate kinase (ackA) genes, along with the supplementation with betaine, improved the co-production of lactate and isoprene from the substrates of glucose and mevalonate. In fed-batch studies, microaerobic fermentation significantly improved the isoprene concentration in fermentation outlet gas (average 0.021 g/L), compared with fermentation under aerobic conditions (average 0.0009 g/L). The final production of D-lactate and isoprene can reach 44.0 g/L and 3.2 g/L, respectively, through fed-batch microaerobic fermentation. Our study demonstrated a dual-phase production strategy in the co-production of isoprene (gas phase) and lactate (liquid phase). The increased concentration of gas-phase isoprene could benefit the downstream process and decrease the production cost to collect and purify the bio-isoprene from the fermentation outlet gas. The proposed microaerobic process can potentially be applied in the production of other volatile bioproducts to benefit the downstream purification process.


Assuntos
Escherichia coli/genética , Hemiterpenos/biossíntese , Ácido Láctico/biossíntese , Engenharia Metabólica , Aerobiose/genética , Butadienos/química , Escherichia coli/metabolismo , Fermentação , Hemiterpenos/química , Ácido Láctico/química , Ácido Mevalônico/química
6.
ACS Omega ; 4(5): 9316-9323, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460021

RESUMO

Efficient synthesis of 5-hydroxymethylfurfural (HMF) using glucose (Glc) as a starting material represents an important process in biomass transformation. In this study, novel bifunctional porous coordination polymer (PCP) catalysts [PCP(Cr)-NH2-x (CH3) x ; x = 0, 1, or 2] containing Lewis acidic and Lewis basic sites have been synthesized and utilized as solid-phase catalysts for HMF synthesis starting from a Glc-in-water system. PCP(Cr)-NH2 was found as the optimal catalyst, with an HMF yield of 65.9% and Glc conversion of 99.9% in a water/tetrahydrofuran (THF) system. Compared with PCP(Cr), amino groups in PCP(Cr)-NH2 catalysts play a vital role in Glc isomerization and subsequent dehydration-cyclization process to obtain the highly selective and effective fructose-to-HMF conversion. High yield and chemoselectivity are ascribed to concurrent extraction of HMF into the THF layer just upon its formation in water. The mechanism of Lewis acid-base synergistic catalysis was deduced by means of infrared spectroscopy, and catalysts could be reused after simple washing procedure with high reproducibility.

7.
Nat Commun ; 10(1): 437, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683871

RESUMO

The functionalization methods of materials based on bacterial cellulose (BC) mainly focus on the chemical modification or physical coating of fermentation products, which may cause several problems, such as environment pollution, low reaction efficiency and easy loss of functional moieties during application. Here, we develop a modification method utilizing the in situ microbial fermentation method combined with 6-carboxyfluorescein-modified glucose (6CF-Glc) as a substrate using Komagataeibacter sucrofermentans to produce functional BC with a nonnatural characteristic fluorescence. Our results indicate that the microbial synthesis method is more efficient, controllable and environmentally friendly than traditional modification methods. Therefore, this work confirms that BC can be functionalized by using a microbial synthesis system with functionalized glucose, which provides insights not only for the functionalization of BC but also for the in situ synthesis of other functional materials through microbial synthetic systems.


Assuntos
Acetobacteraceae/metabolismo , Celulose/biossíntese , Glucose/metabolismo , Fermentação , Fluoresceínas/química , Fluorescência , Corantes Fluorescentes/química , Glucose/análogos & derivados , Química Verde , Teste de Materiais
8.
Sci Rep ; 3: 2445, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23945710

RESUMO

Methylacetoin (3-hydroxy-3-methylbutan-2-one) and 2-methyl-2,3-butanediol are currently obtained exclusively via chemical synthesis. Here, we report, to the best of our knowledge, the first alternative route, using engineered Escherichia coli. The biological synthesis of methylacetoin was first accomplished by reversing its biodegradation, which involved modifying the enzyme complex involved, switching the reaction substrate, and coupling the process to an exothermic reaction. 2-Methyl-2,3-butanediol was then obtained by reducing methylacetoin by exploiting the substrate promiscuity of acetoin reductase. A complete biosynthetic pathway from renewable glucose and acetone was then established and optimized via in vivo enzyme screening and host metabolic engineering, which led to titers of 3.4 and 3.2 g l(-1) for methylacetoin and 2-methyl-2,3-butanediol, respectively. This work presents a biodegradation-inspired approach to creating new biosynthetic pathways for small molecules with no available natural biosynthetic pathway.


Assuntos
Acetoína/metabolismo , Oxirredutases do Álcool/metabolismo , Vias Biossintéticas/fisiologia , Butileno Glicóis/metabolismo , Escherichia coli/fisiologia , Engenharia Genética/métodos , Proteínas Recombinantes/metabolismo , Acetoína/isolamento & purificação , Oxirredutases do Álcool/genética , Biodegradação Ambiental , Butileno Glicóis/isolamento & purificação , Proteínas Recombinantes/genética
9.
Appl Microbiol Biotechnol ; 97(12): 5423-31, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23271670

RESUMO

Traditional temperature-sensitive systems use either heat shock (40-42 °C) or cold shock (15-23 °C) to induce gene expression at temperatures that are not the optimal temperature for host cell growth (37 °C). This impacts the overall productivity and yield by disturbing cell growth and cellular metabolism. Here, we have developed a new system which controls gene expression in Escherichia coli at more permissive temperatures. The temperature-sensitive cI857-P L system and the classic lacI-P lacO system were connected in series to control the gene of interest. When the culture temperature was lowered, the thermolabile cI857 repressor was activated and blocked the expression of lacI from P L. Subsequently, the decrease of LacI derepressed the expression of gene of interest from P lacO . Using a green fluorescent protein marker, we demonstrated that (1) gene expression was tightly regulated at 42 °C and strongly induced by lowering temperature to 25-37 °C; (2) different levels of gene expression can be induced by varying culture temperature; and (3) gene expression after induction was sustained until the end of the log phase. We then applied this system in the biosynthesis of acetoin and demonstrated that high yield and production could be achieved using temperature induction. The ability to express proteins at optimal growth temperatures without chemical inducers is advantageous for large-scale and industrial fermentations.


Assuntos
Biotecnologia/métodos , Escherichia coli/genética , Expressão Gênica , Genética Microbiana/métodos , Ativação Transcricional , Acetoína/metabolismo , Escherichia coli/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Regiões Promotoras Genéticas , Temperatura
10.
Microb Cell Fact ; 11: 41, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22471973

RESUMO

BACKGROUND: As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. RESULTS: In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing 'TesA and the deletion of fadL in E. coli BL21 (DE3) improved extracellular fatty acid production, while deletion of fadD didn't strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-'tesA-ΔfadL) produced 4.8 g L⁻¹ extracellular fatty acid, with the specific productivity of 0.02 g h⁻¹ g⁻¹ dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-'tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired product. The strain pACY-'tesA could also be chosen as the original strain for the next genetic manipulations. CONCLUSIONS: The general strategy of metabolic engineering for the extracellular fatty acid production should be the cyclic optimization between cultivation performance and strain improvements. On the basis of our cultivation process optimization, strain improvements should be further carried out for the effective and cost-effective production process.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Espaço Extracelular/metabolismo , Ácidos Graxos/biossíntese , Vias Biossintéticas , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Espaço Extracelular/genética , Engenharia Genética
11.
Appl Microbiol Biotechnol ; 91(2): 399-405, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21617929

RESUMO

Pretreatment of cellulose with ionic liquids (ILs) can improve the efficiency of the hydrolysis by increasing the surface area of the substrates accessible to solvents and cellulases. However, the IL methods are facing challenges to separate the hydrolyzed sugar products as well as the renewable ILs from the complex hydrolysis mixtures. In this study, an alumina column chromatography (ACC) method was developed for the separation of hydrophilic IL N-methyl-N-methylimidazolium dimethyl phosphate ([Mmim][DMP]) and glucose, which was the main ingredient of the monosaccharide hydrolyzate. The processing parameters involved in ACC separation were investigated in detail. Our results showed that the recovery yields of [Mmim][DMP] and glucose can reach up to 93.38% and 90.14%, respectively, under the optimized parameters: the sampling ratio of 1:20 between the applied sample volume and the bed volume of the column; a gradient elution using methanol (100%, 150 ml) and then water (170 ml) as eluents with 1 ml/min flow rate. The recovered [Mmim][DMP] showed qualified property and was effective in a new hydrolysis reaction. In addition, scale-up ACC separations were successfully done with satisfied separation performance. The results indicated that the ACC is one of the available methods for the separation of ILs and monosaccharides from the hydrolysis mixtures.


Assuntos
Óxido de Alumínio/química , Celulase/metabolismo , Celulose/metabolismo , Cromatografia/métodos , Glucose/química , Líquidos Iônicos/química , Biotecnologia/métodos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Líquidos Iônicos/classificação , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...