Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38865070

RESUMO

Mn(II)-oxidizing bacteria (MOB) are widely distributed in natural environments and can convert soluble Mn(II) into insoluble Mn(III) and Mn(IV). The biogenic manganese oxides (BioMnOx) produced by MOB have been considered for remediating heavy metal pollution and degrading organic pollutants in an eco-friendly manner. In this study, a manganese-oxidizing bacterium was isolated from Mn-polluted rivulet sediment and identified as Bacillus sp. strain M2 by PCR, phylogenetic tree construction, transmission electron microscopy (TEM), and physiological and biochemical indices. Strain M2 grew well under Mn(II) stress. BioMnOx with nanosized irregular geometric shapes and loose structures generated by strain M2 were found on the surface of the bacterial cells. The content of Mn in the bacteria was as high as 5.36%. Approximately 71.24% and 47.52% of Mn(II) was oxidized to Mn(III/IV) in the cell and in the deposits, respectively, within 3 d of cultivation with Mn(II). Extracellular enzymes contributed to the Mn removal and oxidation. In conclusion, Bacillus sp. strain M2 has a high potential for use in the remediation of Mn-contaminated sites.

2.
J Colloid Interface Sci ; 673: 746-755, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38905996

RESUMO

To clarify the key role of oxygen vacancy defects on enhancing the oxidative activity of the catalysts, metal-organic frameworks (MOFs) derived MnOX catalysts with different morphologies and oxygen vacancy defects were successfully prepared using a facile in-situ self-assembly strategy with different alkali moderators. The obtained morphologies included three-dimensional (3D) triangular cone stacked MnOX hollow sphere (MnOX-H) and 3D nanoparticle stacked MnOX nanosphere (MnOX-N). Compared to MnOX-N, MnOX-H exhibited higher activity for the oxidation of toluene (T90 = 226 °C). This was mainly due to the large number of oxygen vacancy defects and Mn4+ species in the MnOX-H catalyst. In addition, the hollow structure of MnOX-H not only facilitated toluene adsorption and activation of toluene and also provided more active sites for toluene oxidation. Reaction mechanism studies showed that the conversion of toluene to benzoate could be realized over MnOX-H catalyst during toluene adsorption at room temperature. In addition, abundant oxygen vacancy defects can accelerate the activated oxidation of toluene and the formation of oxidation products during toluene oxidation.

3.
Environ Sci Technol ; 58(9): 4404-4414, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38310571

RESUMO

Photocatalytic oxidation has gained great interest in environmental remediation, but it is still limited by its low efficiency and catalytic deactivation in the degradation of aromatic VOCs. In this study, we concurrently regulated the surface hydroxyl and oxygen vacancies by introducing Al into ZnSn layered double hydroxide (LDH). The presence of distorted Al species induced local charge redistribution, leading to the remarkable formation of oxygen vacancies. These oxygen vacancies subsequently increased the amount of surface hydroxyl and elongated its bond length. The synergistic effects of surface hydroxyl and oxygen vacancies greatly enhanced reactant adsorption-activation and facilitated charge transfer to generate •OH, •O2-, and 1O2, resulting in highly efficient oxidation and ring-opening of various aromatic VOCs. Compared with commercial TiO2, the optimized ZnSnAl-50 catalyst exhibited about 2-fold activity for the toluene and styrene degradation and 10-fold activity for the chlorobenzene degradation. Moreover, ZnSnAl-50 demonstrated exceptional stability in the photocatalytic oxidation of toluene under a wide humidity range of 0-75%. This work marvelously improves the photocatalytic efficiency, stability, and adaptability through a novel strategy of surface hydroxyl and oxygen vacancies engineering.


Assuntos
Radical Hidroxila , Oxigênio , Adsorção , Oxirredução , Tolueno
4.
Environ Sci Pollut Res Int ; 22(23): 19240-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26253186

RESUMO

This paper studies the toluene removal by a two-stage dielectric barrier discharge (DBD)-catalyst system with three catalysts: MnO(x)/ZSM-5, CoMnO(x)/ZSM-5, and CeMnO(x)/ZSM-5. V-Q Lissajous method, Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), and X-ray photoelectron (XPS) are used to characterize the DBD and catalysts. The DBD processing partially oxidizes the toluene, and the removal efficiency has a linear relationship with ozone generation. Three DBD-catalyst systems are compared in terms of their toluene removal efficiency, Fourier transform infrared (FTIR) spectra, carbon balance, CO selectivity, CO2 selectivity, and ozone residual. The results show that the DBD-catalyst system with CoMnO(x)/ZSM-5 performs better than the other two systems. It has the highest removal efficiency of about 93.7%, and the corresponding energy yield is 4.22 g/kWh. The carbon balance and CO2 selectivity of CoMnO(x)/ZSM-5 is also better than the other two catalysts. The measurements of two important byproducts including aerosols and ozone are also presented.


Assuntos
Cério/química , Cobalto/química , Compostos de Manganês/química , Óxidos/química , Tolueno/química , Adsorção , Catálise , Técnicas Eletroquímicas , Oxirredução , Ozônio/química , Tolueno/isolamento & purificação , Difração de Raios X
5.
Environ Sci Technol ; 49(11): 6831-7, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25941906

RESUMO

The main technical challenges for the treatment of volatile organic compounds (VOCs) with plasma-assisted catalysis in industrial applications are large volume plasma generation under atmospheric pressure, byproduct control, and aerosol collection. To solve these problems, a back corona discharge (BCD) configuration has been designed to evenly generate nonthermal plasma in a honeycomb catalyst. Voltage-current curves, discharge images, and emission spectra have been used to characterize the plasma. Grade particle collection results and flow field visualization in the discharge zones show not only that the particles can be collected efficiently, but also that the pressure drop of the catalyst layer is relatively low. A three-stage plasma-assisted catalysis system, comprising a dielectric barrier discharge (DBD) stage, BCD stage, and catalyst stage, was built to evaluate toluene treatment performance by BCD. The ozone analysis results indicate that BCD enhances the ozone decomposition by collecting aerosols and protecting the Ag-Mn-O catalyst downstream from aerosol contamination. The GC and FTIR results show that BCD contributes to toluene removal, especially when the specific energy input is low, and the total removal efficiency reaches almost 100%. Furthermore, this removal results in the emission of fewer byproducts.


Assuntos
Gases em Plasma/química , Compostos Orgânicos Voláteis/análise , Carbono/análise , Dióxido de Carbono/análise , Monóxido de Carbono/análise , Catálise , Eletricidade , Ozônio/química , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Tolueno/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...