Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(4): 4600-4605, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38242173

RESUMO

Photocatalytic conversion of methane (CH4) to value-added chemicals using H2O as the oxidant under mild conditions is a desired sustainable pathway for synthesizing commodity chemicals. However, controlling product selectivity while maintaining high product yields is greatly challenging. Herein, we develop a highly efficient strategy, based on the precise control of the types of nitrogen dopants, and the design of photocatalysts, to achieve high selectivity and productivity of oxygenates via CH4 photocatalytic conversion. The primary product (methanol) is obtained in a high yield of 159.8 µmol·g-1·h-1 and 47.7% selectivity, and the selectivity of oxygenate compounds reached 92.5%. The unique hollow porous structure and substituted nitrogen sites of nitrogen-doped TiO2 synergistically promote its photo-oxidation performance. Furthermore, in situ attenuated total reflectance Fourier transform infrared spectroscopy provides direct evidence of the key intermediates and their evolution for producing methanol and multicarbon oxygenates. This study provides insights into the mechanism of photocatalytic CH4 conversion.

2.
ACS Omega ; 8(49): 46569-46576, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107883

RESUMO

As one of the most important derivatives of propylene, the production of propylene oxide (PO) is severely restricted. The traditional chlorohydrin process is being eliminated due to environmental concerns, while processes such as Halcon and hydrogen peroxide epoxidation are limited by cost and efficiency, making it difficult to meet market demand. Therefore, achieving PO production through clean and efficient technologies has received extensive attention, and halogen-mediated electrochemical epoxidation of alkene is considered to be a desirable technology for the production of alkylene oxide. In this work, we used electrochemical methods to synthesize PO in halogen-mediated systems based on a RuO2-loaded Ti (RuO2/Ti) anode and screened out two potential mediated systems of chlorine (Cl) and bromine (Br) for the electrosynthesis of PO. At a current density of 100 mA·cm-2, both Cl- and Br-mediated systems delivered PO Faradaic efficiencies of more than 80%. In particular, the Br-mediated system obtained PO Faradaic efficiencies of more than 90% at lower potentials (≤1.5 V vs RHE) with better electrode structure durability. Furthermore, detailed product distribution investigations and DFT calculations suggested hypohalous acid molecules as key reaction intermediates in both Cl- and Br-mediated systems. This work presents a green and efficient PO production route with halogen-mediated electrochemical epoxidation of propylene driven by renewable electricity, exhibiting promising potential to replace the traditional chlorohydrin process.

3.
Plants (Basel) ; 12(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37631140

RESUMO

Soybeans are the main source of oils and protein for humans and animals; however, cold stress jeopardizes their growth and limits the soybean planting area. Aldehyde dehydrogenases (ALDH) are conserved enzymes that catalyze aldehyde oxidation for detoxification in response to stress. Additionally, transgenic breeding is an efficient method for producing stress-resistant germplasms. In this study, the peanut ALDH gene AhALDH2B6 was heterologously expressed in soybean, and its function was tested. We performed RNA-seq using transgenic and wild-type soybeans with and without cold treatment to investigate the potential mechanism. Transgenic soybeans developed stronger cold tolerance, with longer roots and taller stems than P3 soybeans. Biochemically, the transgenic soybeans exhibited a decrease in malondialdehyde activity and an increase in peroxidase and catalase content, both of which are indicative of stress alleviation. They also possessed higher levels of ALDH enzyme activity. Two phenylpropanoid-related pathways were specifically enriched in up-regulated differentially expressed genes (DEGs), including the phenylpropanoid metabolic process and phenylpropanoid biosynthetic process. Our findings suggest that AhALDH2B6 specifically up-regulates genes involved in oxidoreductase-related functions such as peroxidase, oxidoreductase, monooxygenase, and antioxidant activity, which is partially consistent with our biochemical data. These findings established the function of AhALDH2B6, especially its role in cold stress processes, and provided a foundation for molecular plant breeding, especially plant-stress-resistance breeding.

4.
Angew Chem Int Ed Engl ; 62(15): e202218664, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36787047

RESUMO

Using sunlight to produce valuable chemicals and fuels from carbon dioxide (CO2 ), i.e., artificial photosynthesis (AP) is a promising strategy to achieve solar energy storage and a negative carbon cycle. However, selective synthesis of C2 compounds with a high CO2 conversion rate remains challenging for current AP technologies. We performed CO2 photoelectroreduction over a graphene/silicon carbide (SiC) catalyst under simulated solar irradiation with ethanol (C2 H5 OH) selectivity of>99 % and a CO2 conversion rate of up to 17.1 mmol gcat -1 h-1 with sustained performance. Experimental and theoretical investigations indicated an optimal interfacial layer to facilitate the transfer of photogenerated electrons from the SiC substrate to the few-layer graphene overlayer, which also favored an efficient CO2 to C2 H5 OH conversion pathway.

5.
Med Eng Phys ; 94: 41-50, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34303500

RESUMO

Child neck injuries in motor vehicle crashes (MVCs) result in high morbidity and mortality rates. Estimating a statistical cervical vertebrae geometric model and quantifying the variations of the size and shape with age are very important for investigating the dynamic response and injury risk to a child's cervical spine, as well as for providing a geometric basis for developing child anthropomorphic test devices (ATDs) and finite element models (FEMs) of different ages. In this study, spatial geometric points were automatically extracted from the cervical vertebrae computed tomography (CT) scans of 30 children aged 10 to 18 years old (YO), and a statistical geometric model was estimated for the cervical vertebrae as a function of age and neck circumference/neck length according to the method of principal component analysis and regression (PCA&R). Based on this statistical model, geometric point sets representing cervical vertebrae geometries at different ages and percentiles were generated and formed to envelope surfaces. Meanwhile, the size changes of the cervical vertebrae with child growth from 10 to 18 YO were quantified. In general, the anteroposterior length (APL), transverse process width (TPW), vertebral body height (VBH), and vertebral body depth (VBD) of the cervical vertebrae increase with age; the VBH and VBD increase faster than the APL and TPW. Compared with other vertebrae, the APL of C7 is larger, and the rate of increase of C1 with age is evidently slower. The TPWs of C1 and C7 are greater than those of C2 to C6. C7 has higher average values for the VBH and VBD than C3 to C6.


Assuntos
Vértebras Cervicais , Modelos Estatísticos , Adolescente , Estatura , Vértebras Cervicais/diagnóstico por imagem , Criança , Humanos , Tomografia Computadorizada por Raios X , Corpo Vertebral
6.
ChemSusChem ; 13(2): 293-297, 2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31742867

RESUMO

Efficient formation of valuable multicarbon products in CO2 electrochemical reduction is challenging, owing to the difficulty of C-C coupling. Medium micropores embedded in the channel walls of nitrogen-doped ordered mesoporous carbon are found to capably promote ethanol production from CO2 electroreduction. By scaling up the medium micropore content, the yield of ethanol is increased to 2.3 mmol gcat -1 h-1 , far outperforming previously reported state-of-the-art electrocatalysts. The intrinsically higher activity is attributed to the desolvation effect induced by the medium micropores, facilitating the coupling reaction of C1 intermediates to form ethanol.

7.
Chem Asian J ; 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29845755

RESUMO

Electrochemical reduction of carbon dioxide (CO2 ) driven by renewable electricity to give chemicals and fuels is considered an ideal approach that can alleviate both carbon emission and energy tension stress. High-value chemicals such as oxygenates can be effectively produced from the electroreduction of CO2 , and this is highly attractive to promote the economy and applicability of CO2 utilization. This review focuses on recent advancements in the electrochemical reduction of CO2 to formic acid, methanol, ethanol, acetic acid, and other oxygenates. The principles of the process, influencing factors, and typical catalysts are summarized. On the basis of the aforementioned discussions, we present future prospects for further development of the electroreduction of CO2 to oxygenates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...