Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 371, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861165

RESUMO

Understanding the extent of heritability of a plant-associated microbiome (phytobiome) is critically important for exploitation of phytobiomes in agriculture. Two crosses were made between pairs of cotton cultivars (Z2 and J11, L1 and Z49) with differential resistance to Verticillium wilt. F2 plants were grown in a field, together with the four parents to study the heritability of cotton rhizosphere microbiome. Amplicon sequencing was used to profile bacterial and fungal communities in the rhizosphere. F2 offspring plants of both crosses had higher average alpha diversity indices than the two parents; parents differed significantly from F2 offspring in Bray-Curtis beta diversity indices as well. Two types of data were used to study the heritability of rhizosphere microbiome: principal components (PCs) and individual top microbial operational taxonomic units (OTUs). For the L1 × Z49 cross, the variance among the F2 progeny genotypes (namely, genetic variance, VT) was significantly greater than the random variability (VE) for 12 and 34 out of top 100 fungal and bacterial PCs, respectively. For the Z2 × J11 cross, the corresponding values were 10 and 20 PCs. For 29 fungal OTUs and 10 bacterial OTUs out of the most abundant 100 OTUs, genetic variance (VT) was significantly greater than VE for the L1 × Z49 cross; the corresponding values for the Z2 × J11 cross were 24 and one. The estimated heritability was mostly in the range of 40% to 60%. These results suggested the existence of genetic control of polygenic nature for specific components of rhizosphere microbiome in cotton. KEY POINTS: • F2 offspring cotton plants differed significantly from parents in rhizosphere microbial diversity. • Specific rhizosphere components are likely to be genetically controlled by plants. • Common PCs and specific microbial groups are significant genetic components between the two crosses.


Assuntos
Bactérias , Fungos , Gossypium , Microbiota , Rizosfera , Microbiologia do Solo , Gossypium/microbiologia , Gossypium/genética , Microbiota/genética , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Variação Genética , Verticillium/genética , Genótipo
2.
Front Microbiol ; 15: 1377713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638896

RESUMO

Sti1/Hop, a stress-induced co-chaperone protein, serves as a crucial link between Hsp70 and Hsp90 during cellular stress responses. Despite its importance in stress defense mechanisms, the biological role of Sti1 in Verticillium dahliae, a destructive fungal pathogen, remains largely unexplored. This study focused on identifying and characterizing Sti1 homologues in V. dahliae by comparing them to those found in Saccharomyces cerevisiae. The results indicated that the VdSti1-deficient mutant displayed increased sensitivity to drugs targeting the ergosterol synthesis pathway, leading to a notable inhibition of ergosterol biosynthesis. Moreover, the mutant exhibited reduced production of microsclerotia and melanin, accompanied by decreased expression of microsclerotia and melanin-related genes VDH1, Vayg1, and VaflM. Additionally, the mutant's conidia showed more severe damage under heat shock conditions and displayed growth defects under various stressors such as temperature, SDS, and CR stress, as well as increased sensitivity to H2O2, while osmotic stress did not impact its growth. Importantly, the VdSti1-deficient mutant demonstrated significantly diminished pathogenicity compared to the wild-type strain. This study sheds light on the functional conservation and divergence of Sti1 homologues in fungal biology and underscores the critical role of VdSti1 in microsclerotia development, stress response, and pathogenicity of V. dahliae.

3.
Int J Biometeorol ; 68(2): 199-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010415

RESUMO

China produces and consumes the largest amount of cotton, playing a critical role in the world's fiber and textile industries. Theoretically, an increase in temperature poses a complex set of impacts on both cotton and pathogen diseases. However, empirical evidence regarding the overall effect on regional cotton yield in China is currently lacking. In this study, we employ county-level cotton statistics and degree-day indices (n = 30,502) to demonstrate a temperature effect on cotton yield, influenced by both direct temperature effects and indirect effects on verticillium wilt infection in China. Our findings indicate that temperatures between the base growing temperature (15 °C) and the optimal infection threshold for cotton wilt disease (25 °C) reduce cotton yield. However, beyond this threshold, when disease infection is significantly limited, higher temperatures become beneficial. Temperatures exceeding 32 °C causes heat stress, which dominates and drives a decline in yield. Furthermore, we provide a risk assessment of warming on cotton in future climate scenarios. Our model projections reveal an overall decrease in cotton yield ranging from 6.2 to 30.6%, accompanied by amplified heat stress (resulting in a yield decrease of 11.6 to 48.7%) but a reduced threat of verticillium wilt (yield increase of 8.2 to 23.6%) in future. Particularly, the Northwest Region, currently responsible for 80% of cotton production, is expected to be particularly vulnerable. This study emphasizes the importance of investing in long-term technological advancements such as cotton heat-tolerance breeding and redistributing cotton growing areas.


Assuntos
Verticillium , Temperatura , Doenças das Plantas/prevenção & controle , Resistência à Doença , Gossypium , China , Proteínas de Plantas
5.
Mol Plant Pathol ; 24(10): 1238-1255, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37401912

RESUMO

Glycoside hydrolase (GH) family members act as virulence factors and regulate plant immune responses during pathogen infection. Here, we characterized the GH28 family member endopolygalacturonase VdEPG1 in Verticillium dahliae. VdEPG1 acts as a virulence factor during V. dahliae infection. The expression level of VdEPG1 was greatly increased in V. dahliae inoculated on cotton roots. VdEPG1 suppressed VdNLP1-mediated cell death by modulating pathogenesis-related genes in Nicotiana benthamiana. Knocking out VdEPG1 led to a significant decrease in the pathogenicity of V. dahliae in cotton. The deletion strains were more susceptible to osmotic stress and the ability of V. dahliae to utilize carbon sources was deficient. In addition, the deletion strains lost the ability to penetrate cellophane membrane, with mycelia showing a disordered arrangement on the membrane, and spore development was affected. A jasmonic acid (JA) pathway-related gene, GhOPR9, was identified as interacting with VdEPG1 in the yeast two-hybrid system. The interaction was further confirmed by bimolecular fluorescence complementation and luciferase complementation imaging assays in N. benthamiana leaves. GhOPR9 plays a positive role in the resistance of cotton to V. dahliae by regulating JA biosynthesis. These results indicate that VdEPG1 may be able to regulate host immune responses as a virulence factor through modulating the GhOPR9-mediated JA biosynthesis.


Assuntos
Ascomicetos , Verticillium , Fatores de Virulência , Glicosídeo Hidrolases/genética , Gossypium/genética , Doenças das Plantas , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas
6.
Environ Pollut ; 333: 122058, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37330187

RESUMO

Fludioxonil (FL) and metalaxyl-M·fludioxonil·azoxystrobin (MFA) are conventional seed coating agents for controlling cotton seedling diseases. However, their effects on seed endophytic and rhizosphere microecology are still poorly understood. This study aimed to assess the effects of FL and MFA on cotton seed endophytes, rhizosphere soil enzymatic activities, microbiome and metabolites. Both seed coating agents significantly changed seed endophytic bacterial and fungal communities. Growing coated seeds in the soils originating from the Alar (AL) and Shihezi (SH) region inhibited soil catalase activity and decreased both bacterial and fungal biomass. Seed coating agents increased rhizosphere bacterial alpha diversity for the first 21 days but decreased fungal alpha diversity after day 21 in the AL soil. Seed coating reduced the abundance of a number of beneficial microorganisms but enriched some potential pollutant-degrading microorganisms. Seed coating agents may have affected the complexity of the co-occurrence network of the microbiome in the AL soil, reducing connectivity, opposite to what was observed in the SH soil. MFA had more pronounced effects on soil metabolic activities than FL. Furthermore, there were strong links between soil microbial communities, metabolites and enzymatic activities. These findings provide valuable information for future research and development on application of seed coatings for disease management.


Assuntos
Microbiota , Microbiologia do Solo , Rizosfera , Bactérias , Solo , Metabolômica , Sementes
7.
Plant J ; 114(6): 1405-1424, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36948889

RESUMO

Protein lysine acetylation is an important post-translational modification mechanism involved in cellular regulation in eukaryotes. Calmodulin (CaM) is a ubiquitous Ca2+ sensor in eukaryotes and is crucial for plant immunity, but it is so far unclear whether acetylation is involved in CaM-mediated plant immunity. Here, we found that GhCaM7 is acetylated upon Verticillium dahliae (V. dahliae) infection and a positive regulator of V. dahliae resistance. Overexpressing GhCaM7 in cotton and Arabidopsis enhances V. dahliae resistance and knocking-down GhCaM7 makes cotton more susceptible to V. dahliae. Transgenic Arabidopsis plants overexpressing GhCaM7 with mutation at the acetylation site are more susceptible to V. dahliae than transgenics overexpressing the wild-type GhCaM7, implying the importance of the acetylated GhCaM7 in response to V. dahliae infection. Yeast two-hybrid, bimolecular fluorescent complementation, luciferase complementation imaging, and coimmunoprecipitation assays demonstrated interaction between GhCaM7 and an osmotin protein GhOSM34 that was shown to have a positive role in V. dahliae resistance. GhCaM7 and GhOSM34 are co-localized in the cell membrane. Upon V. dahliae infection, the Ca2+ content reduces almost instantly in plants with downregulated GhCaM7 or GhOSM34. Down regulating GhOSM34 enhances accumulation of Na+ and increases cell osmotic pressure. Comparative transcriptomic analyses between cotton plants with an increased or reduced expression level of GhCaM7 and wild-type plants indicate the involvement of jasmonic acid signaling pathways and reactive oxygen species in GhCaM7-enabled disease resistance. Together, these results demonstrate the involvement of CaM protein in the interaction between cotton and V. dahliae, and more importantly, the involvement of the acetylated CaM in the interaction.


Assuntos
Arabidopsis , Ascomicetos , Verticillium , Gossypium/genética , Gossypium/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Acetilação , Verticillium/fisiologia , Resistência à Doença/genética , Ascomicetos/genética , Calmodulina/genética , Calmodulina/metabolismo , Processamento de Proteína Pós-Traducional , Plantas Geneticamente Modificadas/metabolismo , Doenças das Plantas , Regulação da Expressão Gênica de Plantas
8.
Metabolites ; 13(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36837880

RESUMO

Plant triterpenoids play a critical role in plant resistance against Phytophthora infestans de Bary, the causal pathogen of potato and tomato late blight. However, different triterpenoids could have contrasting functions on plant resistance against P. infestans. In this study, we targeted the key biosynthetic gene of all plant triterpenoids, SQUALENE SYNTHASE (SQS), to examine the function of this gene in plant-P. infestans interactions. A post-inoculation, time-course gene expression analysis revealed that SQS expression was induced in Nicotiana benthamiana but was transiently suppressed in Solanum lycopersicum. Consistent with the host-specific changes in SQS expression, concentrations of major triterpenoid compounds were only induced in S. lycopersicum. A stable overexpression of SQS in N. benthamiana reduced plant resistance against P. infestans and induced the hyperaccumulation of stigmasterol. A comparative transcriptomics analysis of the transgenic lines showed that diverse plant physiological processes were influenced by SQS overexpression, suggesting that phytosterol content regulation may not be the sole mechanism through which SQS promotes plant susceptibility towards P. infestans. This study provides experimental evidence for the host-specific transcriptional regulation and function of SQS in plant interactions with P. infestans, offering a novel perspective in examining the quantitative disease resistance against late blight.

9.
Front Microbiol ; 14: 1125564, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778850

RESUMO

Introduction: Long-term continuous cropping may result in the outbreak and proliferation of soil-borne diseases, as well as reduction in annual crop production. Overcoming the obstacles of continuous cropping is critical for the long-term growth of modern agriculture. Soil microbes are essential for plant health, but the consequences of continuous cropping on soil microbiome are still poorly understood. Methods: This study analyzed changes in soil bacterial community composition of Aksu (AKS) and Shihezi (SHZ) in Xinjiang Province during 1-20 years of continuous cropping by 16S amplicon sequencing. The results showed that the incidence of cotton Verticillium wilt rose with the number of cropping years. The bacterial alpha diversity in the AKS soil grew as the number of continuous cropping years increased, however it declined in the SHZ soil. Results: The results of beta diversity analysis showed that there were significant differences in soil bacterial communities between different continuous cropping years and between different soils. The results of community composition changes at the level of main phyla and genus showed that the relative abundance of Actinobacteria, Bacteroidetes and Streptomyces decreased with the increase of continuous cropping years in the AKS and the SHZ soils. In addition, Actinobacteria, Propionibacteriales, and Nocardioidaceae were significantly enriched during the early stages of continuous cropping. Network analysis showed that long-term (≥8 years) continuous cropping interfered with the complexity of soil bacterial co-occurrence networks and reduced collaboration between OTUs. Discussion: These findings suggested that continuous cropping and soil origin jointly affected the diversity and structural of bacterial communities, and the loss of Nocardioidaceae and Streptomyces in Actinobacteria might be one of the reasons of continuous cropping obstacles.

10.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36674996

RESUMO

Verticillium wilt is a kind of plant vascular disease caused by the soilborne fungus Verticillium dahliae, which severely limits cotton production. Our previous studies showed that the endophytic fungus Gibellulopsis nigrescens CEF08111 can effectively control Verticillium wilt and induce a defense response in cotton plants. However, the comprehensive molecular mechanism governing this response is not yet clear. To study the signaling mechanism induced by strain CEF08111, the transcriptome of cotton seedlings pretreated with CEF08111 was sequenced. The results revealed 249, 3559 and 33 differentially expressed genes (DEGs) at 3, 12 and 48 h post inoculation with CEF08111, respectively. At 12 h post inoculation with CEF08111, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEGs were enriched mainly in the plant−pathogen interaction, mitogen-activated protein kinase (MAPK) signaling pathway-plant, and plant hormone signal transduction pathways. Gene ontology (GO) analysis revealed that these DEGs were enriched mainly in the following terms: response to external stimulus, systemic acquired resistance, kinase activity, phosphotransferase activity, xyloglucan: xyloglucosyl transferase activity, xyloglucan metabolic process, cell wall polysaccharide metabolic process and hemicellulose metabolic process. Moreover, many genes, such as calcium-dependent protein kinase (CDPK), flagellin-sensing 2 (FLS2), resistance to Pseudomonas syringae pv. maculicola 1(RPM1) and myelocytomatosis protein 2 (MYC2), that regulate crucial points in defense-related pathways were identified and may contribute to V. dahliae resistance in cotton. Seven DEGs of the pathway phenylpropanoid biosynthesis were identified by weighted gene co-expression network analysis (WGCNA), and these genes are related to lignin synthesis. The above genes were compared and analyzed, a total of 710 candidate genes that may be related to the resistance of cotton to Verticillium wilt were identified. These results provide a basis for understanding the molecular mechanism by which the biocontrol fungus CEF08111 increases the resistance of cotton to Verticillium wilt.


Assuntos
Gossypium , Verticillium , Gossypium/genética , Gossypium/metabolismo , Perfilação da Expressão Gênica , Mecanismos de Defesa , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
11.
Plant Sci ; 328: 111582, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36632889

RESUMO

The soil-borne fungus Verticillium dahliae causes Verticillium wilt (VW), one of the most devastating diseases of cotton. In a previous study showed that GhOPR9 played a positive role in resistance of cotton to VW through the regulation of the Jasmonic acid (JA) pathway. Furtherly, we also found that GhOPR9 interacted with a sucrose galactosyltransferase GhRFS6. Raffinose synthase (RFS) plays a key role in plant innate immunity, including the abiotic stress of drought, darkness. However, there were few reports on the effects of RFS on biotic stress. In this study, we verified the function of GhRFS6 to VW. The expression analysis showed that the GhRFS6 may be regulated by various stresses, and it was upregulated under Vd076 and Vd991 pressures. Inhibition of GhRFS6 expression, hydrogen peroxide (H2O2) content, lignin content, cell wall thickness and a series of defense responses were decreased, and the resistance of cotton to V. dahliae was decreased. In addition, this study showed that GhRFS6 has glycosyltransferase activity and can participate in the regulation of α-galactosidase activity and raffinose and inositol synthesis. And that galactose was accumulated in cotton roots after GhRFS6 silencing, which is beneficial for the colonization and growth of V. dahliae. Furthermore, overexpression of GhRFS6 in Arabidopsis thaliana enhanced plant resistance to V. dahliae. In GUS staining, the promoter expression position of GhRFS6 was also altered after V. dahliae infection. Meanwhile, GhRFS6 has also been shown to resist VW through the regulation of the JA pathway. These results suggest that GhRFS6 is a potential molecular target for improving cotton resistance to VW.


Assuntos
Arabidopsis , Verticillium , Verticillium/fisiologia , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Gossypium/genética , Gossypium/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Arabidopsis/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Head Neck ; 45(4): 806-815, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36608057

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is the most common cancer in the oral cavity. The relationship between the genetic susceptibility of circCHST15 and OSCC remains unclear. METHODS: Genetic variants of circCHST15 were screened using a genotyping analysis from 1044 patients with OSCC and 3199 healthy participants. The circCHST15 expression was detected in 32 pairs of OSCC tissues. The circular RNA quantitative trait locus analysis and the reporter gene assay were performed for verification. RESULTS: The circCHST15 expression was upregulated in OSCC (Wilcoxon p < 1e-3). The genotyping analysis screened out 61 loci in circCHST15 associated with the risk of OSCC. After adjustment and annotation, rs28707473 (A > C, odds ratio = 1.21, 95% CI: 1.076-1.361, p = 1.453e-3) was selected. This genetic variation could elevate the circCHST15 expression level possibly by altering the structure of circular RNAs and affecting transcription factor binding. CONCLUSIONS: The results of this study suggested that genetic variants of circCHST15 may contribute to OSCC susceptibility.


Assuntos
Neoplasias Bucais , RNA Circular , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , População do Leste Asiático , Predisposição Genética para Doença , Neoplasias Bucais/patologia , Polimorfismo de Nucleotídeo Único , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , RNA Circular/genética
13.
Microbiol Spectr ; 11(1): e0351522, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36475739

RESUMO

Verticillium dahliae Kleb is a typical soilborne pathogen that can cause vascular wilt disease on more than 400 plants. Functional analysis of genes related to the growth and virulence is crucial to revealing the molecular mechanism of the pathogenicity of V. dahliae. Glycosidase hydrolases can hydrolyze the glycosidic bond, and some can cause host plant immune response to V. dahliae. Here, we reported a functional validation of VdGAL4 as an α-galactosidase that belongs to glycoside hydrolase family 27. VdGAL4 could cause plant cell death, and its signal peptide plays an important role in cellular immune response. VdGAL4-triggered cell death depends on BAK1 and SOBIR1 in Nicotiana benthamiana. In V. dahliae, the function of VdGAL4 in mycelial growth, conidia, microsclerotium, and pathogenicity was studied by constructing VdGAL4 deletion and complementation mutants. Results showed that the deletion of VdGAL4 reduced the conidial yield and conidial germination rate of V. dahliae and changed the microscopic morphology of conidia; the mycelia were arranged more disorderly and were unable to produce microsclerotium. The VdGAL4 deletion mutants exhibited reduced utilization of different carbon sources, such as raffinose and sucrose. The VdGAL4 deletion mutants were also more sensitive to abiotic stress agents of SDS, sorbitol, low-temperature stress of 16°C, and high-temperature stress of 45°C. In addition, the VdGAL4 deletion mutants lost the ability to penetrate cellophane and its mycelium were disorderly arranged. Remarkably, VdGAL4 deletion mutants exhibited reduced pathogenicity of V. dahliae. These results showed that VdGAL4 played a critical role in the pathogenicity of V. dahliae by regulating mycelial growth, conidial morphology, and the formation of microsclerotium. IMPORTANCE This study showed that α-galactosidase VdGAL4 of V. dahliae could activate plant immune response and plays an important role in conidial morphology and yield, formation of microsclerotia, and mycelial penetration. VdGAL4 deletion mutants significantly reduced the pathogenicity of V. dahliae. These findings deepened the understanding of pathogenic virulence factors and how the mechanism of pathogenic fungi infected the host, which may help to seek new strategies for effective control of plant diseases caused by pathogenic fungi.


Assuntos
Ascomicetos , Verticillium , Virulência/genética , alfa-Galactosidase/metabolismo , Verticillium/genética , Fatores de Virulência/genética , Ascomicetos/metabolismo , Plantas/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo
14.
Oral Dis ; 29(7): 2677-2688, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36214613

RESUMO

OBJECTIVE: Circular RNAs (CircRNAs) are involved in various tumors. However, their role in head and neck squamous cell carcinoma (HNSCC) is unknown. CircRNA sequencing data showed that hsa_circ_0000264 is significantly upregulated in HNSCC tissues. In this study, we aimed to investigate the role of hsa_circ_0000264 in HNSCC and elucidate its underlying regulation mechanism. MATERIALS AND METHODS: RNase R treatment was performed to confirm the loop structure of hsa_circ_0000264. Fluorescence in situ hybridization was performed to show the subcellular localization of hsa_circ_0000264. We then performed wound healing assay, Transwell assay, Western blot, and in vivo experiments to determine the effect of alterations in hsa_circ_0000264 expression. We performed RNA pull-down and dual luciferase reporter assay to identify and confirm the binding sites in RNAs. RESULTS: hsa_circ_0000264 was upregulated in HNSCC tissues and cells, and its loop structure was confirmed. Knockdown of hsa_circ_0000264 inhibited the migration, invasion, and epithelial-to-mesenchymal transition of HNSCC cells in vivo and in vitro. Mechanistically, hsa_circ_000026 upregulation can upregulate the expression of high mobility group AT-hook 2 (HMGA2) by sponging hsa-let-7b-5p, which in turn promotes HNSCC progression. CONCLUSION: Our results showed that hsa_circ_0000264 promotes HNSCC progression via the hsa-let-7b-5p/HMGA2 axis, and hsa_circ_0000264 can serve as a potential target for HNSCC treatment.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Hibridização in Situ Fluorescente , Western Blotting , Transição Epitelial-Mesenquimal/genética , RNA , RNA Circular/genética , Neoplasias de Cabeça e Pescoço/genética , MicroRNAs/genética , Proliferação de Células/genética , Linhagem Celular Tumoral
15.
Curr Genet ; 69(1): 25-40, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36416932

RESUMO

The ergosterol biosynthesis pathway plays an important role in model pathogenic bacteria Saccharomyces cerevisiae, but little is known about the biosynthesis of ergosterol in the pathogenic fungus Verticillium dahliae. In this study, we identified the VdERG2 gene encoding sterol C-8 isomerase from V. dahliae and investigated its function in virulence by generating gene deletion mutants (ΔVdERG2) and complemented mutants (C-ΔVdERG2). Knockout of VdERG2 reduced ergosterol content. The conidial germination rate and conidial yield of ΔVdERG2 significantly decreased and abnormal conidia were produced. In spite of VdERG2 did not affect the utilization of carbon sources by V. dahliae, but the melanin production of ΔVdERG2 was decreased in cellulose and pectin were used as the sole carbon sources. Furthermore, the ΔVdERG2 mutants produced less microsclerotia and melanin with a significant decrease in the expression of microsclerotia and melanin-related genes VaflM, Vayg1, VDH1, VdLAC, VdSCD and VT4HR. In addition, mutants ΔVdERG2 were very sensitive to congo red (CR), sodium dodecyl sulfate (SDS) and hydrogen peroxide (H2O2) stresses, indicating that VdERG2 was involved in the cell wall and oxidative stress response. The absence of VdERG2 weakened the penetration ability of mycelium on cellophane and affected the growth of mycelium. Although ΔVdERG2 could infect cotton, its pathogenicity was significantly impaired. These phenotypic defects in ΔVdERG2 could be complemented by the reintroduction of a full-length VdERG2 gene. In summary, as a single conservative secretory protein, VdERG2 played a crucial role in ergosterol biosynthesis, nutritional differentiation and virulence in V. dahliae.


Assuntos
Ascomicetos , Verticillium , Virulência/genética , Melaninas , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ascomicetos/metabolismo , Doenças das Plantas/microbiologia
16.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203466

RESUMO

Verticillum dahliae is a soil-borne phytopathogenic fungus causing destructive Verticillium wilt disease. We previously found a trehalase-encoding gene (VdPT1) in V. dahliae being significantly up-regulated after sensing root exudates from a susceptible cotton variety. In this study, we characterized the function of VdPT1 in the growth and virulence of V. dahliae using its deletion-mutant strains. The VdPT1 deletion mutants (ΔVdPT1) displayed slow colony expansion and mycelial growth, reduced conidial production and germination rate, and decreased mycelial penetration ability and virulence on cotton, but exhibited enhanced stress resistance, suggesting that VdPT1 is involved in the growth, pathogenesis, and stress resistance of V. dahliae. Host-induced silencing of VdPT1 in cotton reduced fungal biomass and enhanced cotton resistance against V. dahliae. Comparative transcriptome analysis between wild-type and mutant identified 1480 up-regulated and 1650 down-regulated genes in the ΔVdPT1 strain. Several down-regulated genes encode plant cell wall-degrading enzymes required for full virulence of V. dahliae to cotton, and down-regulated genes related to carbon metabolism, DNA replication, and amino acid biosynthesis seemed to be responsible for the decreased growth of the ΔVdPT1 strain. In contrast, up-regulation of several genes related to glycerophospholipid metabolism in the ΔVdPT1 strain enhanced the stress resistance of the mutated strain.


Assuntos
Acremonium , Ascomicetos , Trealase , Verticillium , Trealase/genética , Virulência/genética , Gossypium/genética
17.
Microbiol Spectr ; 10(6): e0247722, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36222688

RESUMO

Verticillium dahliae is a soilborne fungus that causes destructive vascular wilt diseases in a wide range of plant hosts. In this study, we identified two M35 family metalloproteinases: VdM35-1 and VdASPF2, and investigated their function in vitro and in vivo. The results showed that VdM35-1 and VdASPF2 were located in the cell membrane, as secreted proteins depended on signal peptide, and two histidine residues (H) induced cell death and activated plant immune response. VdM35-1 depended on membrane receptor proteins NbBAK1 and NbSOBIR1 in the process of inducing cell death, while VdASPF2 did not depend on them. The deletion of VdM35-1 and VdASPF2 led to the decrease of sporulation and the slow shortening of mycelial branch growth, and the spore morphology of VdM35-1-deficient strain became malformed. In addition, ΔVdM35-1 and ΔVdASPF2 showed more sensitive to osmotic stress, SDS, Congo red (CR), and high temperature. In terms of the utilization of carbon sources, the knockout mutants exhibited decreased utilization of carbon sources, and the growth rates on the medium containing sucrose, starch, and pectin were lower than the wild type strain, with significantly limited growth, especially on galactose-containing medium. Furthermore, ΔVdM35-1 and ΔVdASPF2 showed a significant reduction in pathogenicity. Collectively, these results suggested that VdM35-1 and VdASPF2 were important multifunction factors in the pathogenicity of V. dahliae and relative to stress adaptation and activated plant immune response. IMPORTANCE Verticillium wilt, caused by the notorious fungal pathogen V. dahliae, is one of the main limiting factors for agricultural production. Metalloproteases played an important role in the pathogenic mechanism of pathogens. Our research found that M35 family metalloproteases VdM35-1 and VdASPF2 played an important role in the development, adaptability, and pathogenicity of V. dahliae, providing a new perspective for further understanding the molecular mechanism of virulence of fungal pathogens.


Assuntos
Ascomicetos , Verticillium , Virulência , Verticillium/genética , Ascomicetos/metabolismo , Plantas/metabolismo , Carbono/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo
18.
Front Microbiol ; 13: 1021064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204634

RESUMO

Rhizosphere microbial communities are recognized as crucial products of intimate interactions between plant and soil, playing important roles in plant growth and health. Enhancing the understanding of this process is a promising way to promote the next green revolution by applying the multifunctional benefits coming with rhizosphere microbiomes. In this study, we propagated eight cotton genotypes (four upland cotton cultivars and four sea-land cotton cultivars) with varying levels of resistance to Verticillium dahliae in three distinct soil types. Amplicon sequencing was applied to profile both bacterial and fungal communities in the rhizosphere of cotton. The results revealed that soil origin was the primary factor causing divergence in rhizosphere microbial community, with plant genotype playing a secondary role. The Shannon and Simpson indices revealed no significant differences in the rhizosphere microbial communities of Gossypium barbadense and G. hirsutum. Soil origin accounted for 34.0 and 59.05% of the total variability in the PCA of the rhizosphere bacterial and fungal communities, respectively, while plant genotypes within species only accounted for 1.1 to 6.6% of the total variability among microbial population. Similar results were observed in the Bray-Curtis indices. Interestingly, the relative abundance of Acidobacteria phylum in G. barbadense was greater in comparison with that of G. hirsutum. These findings suggested that soil origin and cotton genotype modulated microbiome assembly with soil predominantly shaping rhizosphere microbiome assembly, while host genotype slightly tuned this recruitment process by changing the abundance of specific microbial consortia.

19.
Cancer Sci ; 113(8): 2704-2715, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35657703

RESUMO

Elevated adenosine generated by CD73 (ecto-5'-nucleotidase; NT5E) could boost immunosuppressive responses and promote immune evasion in the tumor microenvironment. However, despite the immune response, CD73 could also promote tumor progression in a variety of cancers, and the nonimmunologic role and corresponding molecular mechanism of CD73 involved in head and neck squamous cell carcinoma (HNSCC) progression are not well characterized. Here, we demonstrated that CD73/NT5E is overexpressed in HNSCC tissues and predicts poor prognosis. Suppression of CD73 inhibited the proliferation, migration, and invasion of HNSCC cell lines (CAL27 and HN4) in vitro and in vivo. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) predicted that CD73 may be involved in invadopodia formation and MAPK signaling activation. As expected, knockdown of CD73 inhibited the MAPK signaling pathway, and the suppressive effect of CD73 knockdown on proliferation, migration, invasion, and invadopodia formation was reversed by a MAPK signaling activator. Our results suggest that CD73 could promote the proliferation, migration, invasion, and invadopodia formation of HNSCC via the MAPK signaling pathway and provide new mechanistic insights into the nonimmunological role of CD73 in HNSCC.


Assuntos
5'-Nucleotidase , Neoplasias de Cabeça e Pescoço , Podossomos , Carcinoma de Células Escamosas de Cabeça e Pescoço , 5'-Nucleotidase/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas Ligadas por GPI/genética , Neoplasias de Cabeça e Pescoço/genética , Humanos , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Microambiente Tumoral/genética
20.
Int J Mol Sci ; 23(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35563093

RESUMO

Cotton Verticillium wilt, caused by the notorious fungal phytopathogen Verticillium dahliae (V. dahliae), is a destructive soil-borne vascular disease and severely decreases cotton yield and quality worldwide. Transcriptional and post-transcriptional regulation of genes responsive to V. dahliae are crucial for V. dahliae tolerance in plants. However, the specific microRNAs (miRNAs) and the miRNA/target gene crosstalk involved in cotton resistance to Verticillium wilt remain largely limited. To investigate the roles of regulatory RNAs under V. dahliae induction in upland cotton, mRNA and small RNA libraries were constructed from mocked and infected roots of two upland cotton cultivars with the V. dahliae-sensitive cultivar Jimian 11 (J11) and the V. dahliae-tolerant cultivar Zhongzhimian 2 (Z2). A comparative transcriptome analysis revealed 8330 transcripts were differentially expressed under V. dahliae stress and associated with several specific biological processes. Moreover, small RNA sequencing identified a total of 383 miRNAs, including 330 unique conserved miRNAs and 53 novel miRNAs. Analysis of the regulatory network involved in the response to V. dahliae stress revealed 31 differentially expressed miRNA−mRNA pairs, and the up-regulation of GhmiR395 and down-regulation of GhmiR165 were possibly involved in the response to V. dahliae by regulating sulfur assimilation through the GhmiR395-APS1/3 module and the establishment of the vascular pattern and secondary cell wall formation through GhmiR165-REV module, respectively. The integrative analysis of mRNA and miRNA expression profiles from upland cotton lays the foundation for further investigation of regulatory mechanisms of resistance to Verticillium wilt in cotton and other crops.


Assuntos
MicroRNAs , Verticillium , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Gossypium/genética , MicroRNAs/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , RNA Mensageiro/genética , Verticillium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...