Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430573

RESUMO

In advanced transportation-management systems, variable speed limits are a crucial application. Deep reinforcement learning methods have been shown to have superior performance in many applications, as they are an effective approach to learning environment dynamics for decision-making and control. However, they face two significant difficulties in traffic-control applications: reward engineering with delayed reward and brittle convergence properties with gradient descent. To address these challenges, evolutionary strategies are well suited as a class of black-box optimization techniques inspired by natural evolution. Additionally, the traditional deep reinforcement learning framework struggles to handle the delayed reward setting. This paper proposes a novel approach using covariance matrix adaptation evolution strategy (CMA-ES), a gradient-free global optimization method, to handle the task of multi-lane differential variable speed limit control. The proposed method uses a deep-learning-based method to dynamically learn optimal and distinct speed limits among lanes. The parameters of the neural network are sampled using a multivariate normal distribution, and the dependencies between the variables are represented by a covariance matrix that is optimized dynamically by CMA-ES based on the freeway's throughput. The proposed approach is tested on a freeway with simulated recurrent bottlenecks, and the experimental results show that it outperforms deep reinforcement learning-based approaches, traditional evolutionary search methods, and the no-control scenario. Our proposed method demonstrates a 23% improvement in average travel time and an average of a 4% improvement in CO, HC, and NOx emission.Furthermore, the proposed method produces explainable speed limits and has desirable generalization power.

2.
Comput Intell Neurosci ; 2015: 364089, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25866501

RESUMO

Traffic speed data plays a key role in Intelligent Transportation Systems (ITS); however, missing traffic data would affect the performance of ITS as well as Advanced Traveler Information Systems (ATIS). In this paper, we handle this issue by a novel tensor-based imputation approach. Specifically, tensor pattern is adopted for modeling traffic speed data and then High accurate Low Rank Tensor Completion (HaLRTC), an efficient tensor completion method, is employed to estimate the missing traffic speed data. This proposed method is able to recover missing entries from given entries, which may be noisy, considering severe fluctuation of traffic speed data compared with traffic volume. The proposed method is evaluated on Performance Measurement System (PeMS) database, and the experimental results show the superiority of the proposed approach over state-of-the-art baseline approaches.


Assuntos
Algoritmos , Inteligência Artificial , Bases de Dados Factuais , Reconhecimento Automatizado de Padrão , Processamento de Sinais Assistido por Computador , Reconhecimento Automatizado de Padrão/métodos , Tamanho da Amostra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...