Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(17): e2200608, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35344263

RESUMO

Controlled morphology of solution-processed thin films have realized impressive achievements for non-fullerene acceptor (NFA)-based organic solar cells (OSCs). Given the large set of donor-acceptor pairs, employing various processing conditions to realize optimal morphology for high efficiency and stable OSCs is a strenuous task. Therefore, comprehensive correlations between processing conditions and morphology evolution pathways have to be developed for efficient performance and stability of devices. Within the framework of the blend system, crystallization transitions of NFA molecules are tracked utilizing the first heating scan of differential scanning calorimeter (DSC) measurement correlating with respective morphology evolution of blend films. Real-time dynamics measurements and morphology characterizations are combined to provide optimal morphology transition pathways as NFA molecules are shown to be released from the mixed-phase to form balanced ordered packing with variant processing conditions. Polymer:NFA films are fabricated using blade coating incorporating solvent additive or thermal annealing as processing conditions as a correlation is formulated between performance and stability of solar cells with morphology transition pathways. This work demonstrates the significance of processing condition-controlled transition pathways for the realization of optimal morphology leading to superior OSC devices.

2.
Nat Commun ; 10(1): 5393, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772169

RESUMO

The high efficiency all-small-molecule organic solar cells (OSCs) normally require optimized morphology in their bulk heterojunction active layers. Herein, a small-molecule donor is designed and synthesized, and single-crystal structural analyses reveal its explicit molecular planarity and compact intermolecular packing. A promising narrow bandgap small-molecule with absorption edge of more than 930 nm along with our home-designed small molecule is selected as electron acceptors. To the best of our knowledge, the binary all-small-molecule OSCs achieve the highest efficiency of 14.34% by optimizing their hierarchical morphologies, in which the donor or acceptor rich domains with size up to ca. 70 nm, and the donor crystals of tens of nanometers, together with the donor-acceptor blending, are proved coexisting in the hierarchical large domain. All-small-molecule photovoltaic system shows its promising for high performance OSCs, and our study is likely to lead to insights in relations between bulk heterojunction structure and photovoltaic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...