Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(30): e2309822, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38396268

RESUMO

Fe─N─C is the most promising alternative to platinum-based catalysts to lower the cost of proton-exchange-membrane fuel cell (PEMFC). However, the deficient durability of Fe─N─C has hindered their application. Herein, a TiN-doped Fe─N─C (Fe─N─C/TiN) is elaborately synthesized via the sol-gel method for the oxygen-reduction reaction (ORR) in PEMFC. The interpenetrating network composed by Fe─N─C and TiN can simultaneously eliminate the free radical intermediates while maintaining the high ORR activity. As a result, the H2O2 yields of Fe─N─C/TiN are suppressed below 4%, ≈4 times lower than the Fe─N─C, and the half-wave potential only lost 15 mV after 30 kilo-cycle accelerated durability test (ADT). In a H2─O2 fuel cell assembled with Fe─N─C/TiN, it presents 980 mA cm-2 current density at 0.6 V, 880 mW cm-2 peak power density, and only 17 mV voltage loss at 0.80 A cm-2 after 10 kilo-cycle ADT. The experiment and calculation results prove that the TiN has a strong adsorption interaction for the free radical intermediates (such as *OH, *OOH, etc.), and the radicals are scavenged subsequently. The rational integration of Fe single-atom, TiN radical scavenger, and highly porous network adequately utilize the intrinsic advantages of composite structure, enabling a durable and active Pt-metal-free catalyst for PEMFC.

2.
ACS Appl Mater Interfaces ; 16(4): 4811-4817, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38241134

RESUMO

The design of a low-platinum (Pt) proton-exchange-membrane fuel cell (PEMFC) can reduce its high cost. However, the development of a low-Pt PEMFC is severely hindered by the high oxygen transfer resistance in the catalyst layer. Herein, a carbon with interconnected and hierarchical pores is synthesized as a support for the low-Pt catalyst to lower the oxygen transfer resistance. A H2-air fuel cell assembled by Pt/hierarchical porous carbon shows 1610 mW/cm2 peak power density, 2230 mA/cm2 current density at 0.60 V, and only 18.4 S/m local oxygen transfer resistance with 0.10 mgPt/cm2 Pt loading at the cathode, which far exceeds those of various carbon black supports and commercially used Pt/C catalysts. Both the experimental and simulation results have shown the advancement of hierarchical pores toward the high efficiency of oxygen transportation.

3.
RSC Adv ; 13(22): 15190-15198, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37213335

RESUMO

Novel nanorod aerogels have gained tremendous attention owing to their unique structure. However, the intrinsic brittleness of ceramics still severely limits their further functionalization and application. Here, based on the self-assembly between one-dimensional (1D) Al2O3 nanorods and two-dimensional (2D) graphene sheets, lamellar binary Al2O3 nanorod-graphene aerogels (ANGAs) were prepared by the bidirectional freeze-drying technique. Thanks to the synergistic effect of rigid Al2O3 nanorods and high specific extinction coefficient elastic graphene, the ANGAs not only exhibit robust structure and variable resistance under pressure, but also possess superior thermal insulation properties compared to pure Al2O3 nanorod aerogels. Therefore, a series of fascinating features such as ultra-low density (3.13-8.26 mg cm-3), enhanced compressive strength (6 times higher than graphene aerogel), excellent pressure sensing durability (500 cycles at 40% strain) and ultra-low thermal conductivity (0.0196 W m-1 K-1 at 25 °C and 0.0702 W m-1 K-1 at 1000 °C) are integrated in ANGAs. The present work provides fresh insight into the fabrication of ultralight thermal superinsulating aerogels and the functionalization of ceramic aerogels.

4.
Nanomaterials (Basel) ; 13(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37110890

RESUMO

Emerging fiber aerogels with excellent mechanical properties are considered as promising thermal insulation materials. However, their applications in extreme environments are hindered by unsatisfactory high-temperature thermal insulation properties resulting from severely increased radiative heat transfer. Here, numerical simulations are innovatively employed for structural design of fiber aerogels, demonstrating that adding SiC opacifiers to directionally arranged ZrO2 fiber aerogels (SZFAs) can substantially reduce high-temperature thermal conductivity. As expected, SZFAs obtained by directional freeze-drying technique demonstrate far superior high-temperature thermal insulation performance over existing ZrO2-based fiber aerogels, with a thermal conductivity of only 0.0663 W·m-1·K-1 at 1000 °C. Furthermore, SZFAs also exhibit excellent comprehensive properties, including ultralow density (6.24-37.25 mg·cm-3), superior elasticity (500 compression cycles at 60% strain) and outstanding heat resistance (up to 1200 °C). The birth of SZFAs provides theoretical guidance and simple construction methods for the fabrication of fiber aerogels with excellent high-temperature thermal insulation properties used for extreme conditions.

5.
Adv Mater ; 35(31): e2300624, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37038691

RESUMO

Achieving high catalytic performance through the lowest possible content of platinum (Pt) is the key to cost reduction of proton-exchange-membrane fuel cells (PEMFCs). However, lowering the Pt loading in PEMFCs leads to the high mass-transport resistance of oxygen originating from the limited active sites, and causes less stability of the catalysts due to Pt size growth after long-time operation. Herein, Pt-metal/metal-N-C aerogel catalysts are designed that substantially reduce oxygen-related mass transport resistance and have long-term durability. The tailoring of the Fe-N-C aerogel support with hierarchical and interconnecting pores enable a low local oxygen transport resistance (0.18 s cm-1 ) for PEMFCs with ultralow Pt loading (50 ± 5 µgPt cm- 2 ). Chemical confinement of Fe─N sites ensures high stability of the loaded-Pt both in the processes of synthesis up to 1000 °C and practical application in PEMFCs. The ultralow Pt PEMFC displays a low voltage loss of 8 mV at 0.80 A cm- 2 and unchanged electrochemical surface area after 60 000 cycles of accelerated durability testing. The allying of the hierarchical pores, the aerogel, and the single atoms can fully reflect their structural advantages and expand the understanding for the synthesis of advanced fuel cell PEMFCs catalysts.

6.
Gels ; 9(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36975663

RESUMO

Increasing pollution from industrial wastewater containing oils or organic solvents poses a serious threat to both the environment and human health. Compared to complex chemical modifications, bionic aerogels with intrinsic hydrophobic properties exhibit better durability and are considered as ideal adsorbents for oil-water separation. However, the construction of biomimetic three-dimensional (3D) structures by simple methods is still a great challenge. Here, we prepared biomimetic superhydrophobic aerogels with lotus leaf-like structures by growing carbon coatings on Al2O3 nanorod-carbon nanotube hybrid backbones. Thanks to its multicomponent synergy and unique structure, this fascinating aerogel can be directly obtained through a simple conventional sol-gel and carbonization process. The aerogels exhibit excellent oil-water separation (22 g·g-1), recyclability (over 10 cycles) and dye adsorption properties (186.2 mg·g-1 for methylene blue). In addition, benefiting from the conductive porous structure, the aerogels also demonstrate outstanding electromagnetic interference (EMI) shielding capabilities (~40 dB in X-band). This work presents fresh insights for the preparation of multifunctional biomimetic aerogels.

7.
RSC Adv ; 12(22): 13783-13791, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35541432

RESUMO

Carbon aerogels (CAs) have attracted attention in thermal insulation. However, the traditional sol-gel method for preparing them involves time-consuming solvent exchange and rigorous supercritical drying processes, and the obtained CAs are brittle and crumble easily. To address these problems, a carbon fibre-reinforced carbon aerogel (CF/CA) was prepared via combining a resorcinol-furfural (RF) gel containing a salt (ZnCl2) with polyacrylonitrile (PAN) fiber felt. The CF/CA not only has low thermal conductivity (0.6904 W m-1 K-1) even at an ultra-high temperature of 1800 °C in an argon atmosphere but also exhibits relatively high compressive strength (6.10 MPa, 10% ε) and a low density of 0.68 g cm-3. The CF/CAs can be used as ultrahigh-temperature thermal insulators (under inert atmospheres or vacuum) in thermal protection systems such as space vehicles or industrial high temperature furnaces. Our novel strategy may lead to lower-cost and large scale industrial processes of CF/CAs.

8.
Small Methods ; 6(5): e2200045, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35344287

RESUMO

Ceramic aerogels have great potential in the areas of thermal insulation, catalysis, filtration, environmental remediation, energy storage, etc. However, the conventional shaping and post-processing of ceramic aerogels are plagued by their brittleness due to the inefficient neck connection of oxide ceramic nanoparticles. Here a versatile thermal-solidifying direct-ink-writing has been proposed for fabricating heat-resistant ceramic aerogels. The versatility lies in the good compatibility and designability of ceramic inks, which makes it possible to print silica aerogels, alumina-silica aerogels, and titania-silica aerogels. 3D-printed ceramic aerogels show excellent high-temperature stability up to 1000 °C in air (linear shrinkage less than 5%) when compared to conventional silica aerogels. This improved heat resistance is attributed to the existence of a refractory fumed silica phase, which restrains the microstructure destruction of ceramic aerogels in high-temperature environments. Benefiting from low density (0.21 g cm-3 ), high surface area (284 m2 g-1 ), and well-distributed mesopores, 3D-printed ceramic aerogels possess a low thermal conductivity (30.87 mW m-1 K-1 ) and are considered as ideal thermal insulators. The combination of ceramic aerogels with 3D printing technology would open up new opportunities to tailor the geometry of porous materials for specific applications.

9.
ACS Appl Mater Interfaces ; 13(34): 40964-40975, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34424660

RESUMO

Silica aerogels are attractive materials for various applications due to their exceptional performances and open porous structure. Especially in thermal management, silica aerogels with low thermal conductivity need to be processed into customized structures and shapes for accurate installation on protected parts, which plays an important role in high-efficiency insulation. However, traditional subtractive manufacturing of silica aerogels with complex geometric architectures and high-precision shapes has remained challenging since the intrinsic ceramic brittleness of silica aerogels. Comparatively, additive manufacturing (3D printing) provides an alternative route to obtain custom-designed silica aerogels. Herein, we demonstrate a thermal-solidifying 3D printing strategy to fabricate silica aerogels with complex architectures via directly writing a temperature-induced solidifiable silica ink in an ambient environment. The solidification of silica inks is facilely realized, coupling with the continuous ammonia catalysis by the thermolysis of urea. Based on our proposed thermal-solidifying 3D printing strategy, printed objects show excellent shape retention and have a capacity to subsequently undergo the processes of in situ hydrophobic modification, solvent replacement, and supercritical drying. 3D-printed silica aerogels with hydrophobic modification show a super-high water contact angle of 157°. Benefiting from the low density (0.25 g·cm-3) and mesoporous silica network, optimized 3D-printed specimens with a high specific surface area of 272 m2·g-1 possess a low thermal conductivity of 32.43 mW·m-1·K-1. These outstanding performances of 3D-printed silica aerogels are comparable to those of traditional aerogels. More importantly, the thermal-solidifying 3D printing strategy brings hope to the custom design and industrial production of silica aerogel insulation materials.

10.
Materials (Basel) ; 14(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34300901

RESUMO

To further reduce the manufacturing cost and improve safety, silica aerogel composites (SAC) with low density and low thermal conductivity synthesized via ambient pressure drying (APD) technology have gradually become one of the most focused research areas. As a solvent, ethanol is flammable and needs to be replaced by other low surface tension solvents, which is dangerous and time-consuming. Therefore, the key steps of solvent replacement and surface modification in the APD process need to be simplified. Here, we demonstrate a facile strategy for preparing high strength mullite fiber reinforced SAC, which is synthesized by APD using water as a solvent, rather than using surface modification or solvent replacement. The effects of the fiber density on the physical properties, mechanical properties, and thermal conductivities of SAC are discussed in detail. The results show that when the fiber density of SAC is 0.24 g/cm3, the thermal conductivity at 1100 °C is 0.127 W/m·K, and the compressive strength at 10% strain is 1.348 MPa. Because of the simple synthesis process and excellent thermal-mechanical performance, the SAC is expected to be used as an efficient and economical insulation material.

11.
Chem Soc Rev ; 50(6): 3842-3888, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33522550

RESUMO

As an extraordinarily lightweight and porous functional nanomaterial family, aerogels have attracted considerable interest in academia and industry in recent decades. Despite the application scopes, the modest mechanical durability of aerogels makes their processing and operation challenging, in particular, for situations demanding intricate physical structures. "Bottom-up" additive manufacturing technology has the potential to address this drawback. Indeed, since the first report of 3D printed aerogels in 2015, a new interdisciplinary research area combining aerogel and printing technology has emerged to push the boundaries of structure and performance, further broadening their application scope. This review summarizes the state-of-the-art of printed aerogels and presents a comprehensive view of their developments in the past 5 years, and highlights the key near- and mid-term challenges.

12.
Materials (Basel) ; 13(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580420

RESUMO

The preparation of novel polymer aerogel materials with enhanced flame-retardancy, superior thermal insulation and mechanical strength is of great practical significance in energy-savings and fire-prevention for buildings. Herein, we reported the fiber-reinforced polybenzoxazine (PBO) aerogel composites with flame retardance and thermal insulation, which were prepared under room temperature and atmospheric pressure, and using 4,4'-diaminodiphenlymethane (MDA) benzoxazine monomer as the raw material and oxalic acid (OA) as the catalyst. Several outstanding attributes were achieved in the aerogel composites, such as relatively low thermal conductivity (0.069 W/m·K at 105 Pa, 0.031 W/m·K at 5 Pa), high limiting oxygen index (LOI) up to 32.5, and enhanced mechanical properties. It can be compressed to more than 80% of the deformation without obvious cracks, and shows high compressive modulus and specific modulus (20.69 MPa and 5.05 × 104 N·m/Kg, respectively). All the excellent comprehensive properties mean that fiber-reinforced PBO aerogel composites have broad application prospects in the fields of flame retardancy and thermal insulation.

13.
RSC Adv ; 9(19): 10948-10957, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35515298

RESUMO

Native silica aerogels are fragile and brittle, which prevents their wider utility. For designing more durable and stronger silica aerogels, polyvinylmethyldimethoxysilane (PVMDMS) polymers as effective and multifunctional reinforcing agents were used to strengthen methyltrimethoxysilane based silica aerogels (MSAs). The PVMDMS polymer, which was composed of long-chain aliphatic hydrocarbons and organic side-chain methyl and alkoxysilane groups, was integrated into silica networks via a simple sol-gel process. Compared with MSAs, PVMDMS reinforced MSAs (PRMSAs) display many fascinating characteristics. PRMSAs exhibit improved hydrophobic properties (water contact angle of 136.9°) due to abundant methyl groups in the silica networks. Benefiting from the fine integration of PVMDMS polymers into MSAs, PRMSAs show a perfectly elastic recovery property, the compressive strength of which ranges from 0.19 to 1.98 MPa. More importantly, PVMDMS polymers have successfully suppressed the growth of secondary particles. Homogeneous silica networks formed by nanoscale particles give PRMSAs a high surface area of 1039 m2 g-1. Moreover, optimized PRMSAs also exhibit a low thermal conductivity of 0.0228 W m-1 K-1 under ambient conditions, and their thermal stability reaches up to 222.3 °C in air. All the results obtained from this paper will help us to design silica aerogels.

14.
RSC Adv ; 9(11): 5967-5977, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35517275

RESUMO

The control strategy for the microstructure of resorcinol-furfural (RF) aerogels and derived carbon aerogels is attracting attention in different applications such as adsorbents, electrochemical electrodes, thermal insulation and so on. In this work, RF aerogels with abundant micropores were synthesized successfully by the sol-gel process using resorcinol (R) and furfural (F) as monomers, methanol (M) as the solvent, hexamethylenetetramine (H) as the catalyst, and zinc chloride (Z) as a salt template. The RF aerogels with micro specific surface area up to 228.28 m2 g-1 thus obtained have a high specific surface area (547.96 m2 g-1), and have a large total pore volume (0.7960 cm3 g-1). The carbon aerogels were synthesized by pyrolyzing RF aerogels under a flowing argon atmosphere. Compared with carbon aerogel synthesized without a salt template, carbon aerogels synthesized with a salt template have higher BET specific surface area and larger total pore volume. Moreover, the mean pore size and particle size of carbon aerogels could be greatly reduced by adding the salt template. The influence of M/R ratio (molar ratio of methanol to resorcinol) and Z/R ratio (molar ratio of zinc chloride to resorcinol) on the microstructure of RF aerogels was systematically investigated. The salt templating is an effective approach for controlling the microstructure of RF aerogels and derived carbon aerogels.

15.
RSC Adv ; 9(14): 7833-7841, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35521213

RESUMO

The traditional SiO2 aerogels are difficult to apply in the fields of energy storage and heat insulation due to their poor mechanical properties. In order to deal with this issue, the polyvinylpolymethylsiloxane aerogel (PVPMSA) materials with fine mechanical flexibility and excellent thermal insulation properties are suitable substitutions. In this paper, the double cross-linking organic-inorganic hybrid PVPMSAs were prepared through the processes of free radical polymerization and hydrolytic polycondensation. The internal silica network reinforced with aliphatic hydrocarbons has significantly improved the mechanical properties and acquired a high specific surface area, reaching up to 1218 m2 g-1. Furthermore, the thermal conductivity of monolithic PVPMSAs has been investigated by changing the density and environmental conditions. Results show that PVPMSAs at 25 °C in 5 Pa have a thermal conductivity as low as 14.69 mW m-1 K-1, and the solid thermal conductivity shows a flat growth with the increase of density. Meanwhile, the nanosize pores could significantly inhibit the heat transfer of gas. As for the radiative thermal conductivity, it is greatly affected by temperature. All these results obtained from this paper would help us to design thermal insulators reasonably.

16.
ACS Appl Mater Interfaces ; 10(35): 29448-29456, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30088907

RESUMO

Metal-free bifunctional oxygen electrocatalysts are extremely critical to the advanced energy conversion devices, such as high energy metal-air batteries. Effective tuning of edge defects and electronic density on carbon materials via simple methods is especially attractive. In this work, a facile alkali activation method has been proposed to prepare carbon with large specific surface area and optimized porosity. In addition, subsequent nitrogen-doping leads to high pyridinic-N and graphitic-N contents and abundant edge defects, further enhancing electrochemical activities. Theoretical modeling via first-principles calculations has been conducted to correlate the electrocatalytic activities with their fundamental chemical structure of N doping and edge defect engineering. The metal-free product (NKCNPs-900) shows a high half-wave potential of 0.79 V (ORR). Furthermore, the assembled Zn-air batteries display excellent performance among carbon-based metal-free oxygen electrocatalysts, such as large peak power density up to 131.4 mW cm-2, energy density as high as 889.0 W h kg-1 at 4.5 mA cm-2, and remarkable discharge-charge cycles up to 575 times. Preliminarily, the rechargeable nonaqueous Li-air batteries were also investigated. Therefore, our work provides a low-cost, metal-free, and high-performance bifunctional carbon-based electrocatalyst for metal-air batteries.

17.
Nanomaterials (Basel) ; 8(4)2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29671818

RESUMO

The conventional sol-gel method for preparing porous carbons is tedious and high-cost to prepare porous carbons and the control over the nanoporous architecture by solvents and carbonization is restricted. A simple and novel self-sacrificial salt templating method was first presented to adjust the microporous structure of porous carbon monoliths synthesized via the solvothermal method. Apart from good monolithic appearance, the solvothermal route allowed for ambient drying because it made sure that the polymerization reaction was completed quickly and thoroughly. The intact and crack-free porous carbon monoliths were investigated by scanning electron microscopy (SEM), thermogravimetric differential scanning calorimetry (TG-DSC), Fourier transform infrared (FT-IR), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and nitrogen sorption measurements. It was proven that the self-sacrificial salts NH4SCN had been removed during pyrolyzing and so, porous carbon monoliths could be directly obtained after carbonization without the need of washing removal of salts. Most importantly, the microporous specific surface area of the resultant porous carbon monoliths was dramatically increased up to 770 m²/g and the Brunauer⁻Emmett⁻Teller (BET) specific surface area was up to 1131 m²/g. That was because the salts NH4SCN as self-sacrificial templating helped to form more around 0.6 nm, 0.72 nm and 1.1 nm micropores. The self-sacrificial salt templating is also a suitable and feasible method for controlling the nanoporous structure of other porous materials.

18.
Nanomaterials (Basel) ; 9(1)2018 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-30597934

RESUMO

To obtain new high-temperature resistant composites that can meet the requirements of aircraft development for thermal insulation and mechanical properties, SiBCO aerogel composites were prepared by sol-gel, supercritical drying and high-temperature pyrolysis with trimethyl borate (TMB) or phenylboronic acid (PBA) as the boron source and mullite fiber as reinforcement. The structure and composition of the SiBCO aerogel and its composites were characterized with SEM, FT-IR, ICP and nitrogen adsorption tests. The specific surface area of the SiBCO aerogel is 293.22 m²/g, and the pore size is concentrated in the range of 10⁻150 nm. The mechanical properties, the thermal insulation properties and the temperature resistance were also studied. Due to the introduction of boron, the temperature resistance of SiBCO aerogel composites is improved greatly, and the service temperature of composites reached 1773 K. When n (TMB)/n (TEOS) = 1/1, the temperature resistance of the composites is the best. After heating in air at 1773 K for 30 min, the shrinkage of SiBCO aerogel composites is only 2.45%, and the thermal conductivity of the composites is 0.138 W/(m·K) at 1773 K. In addition, the type and amount of catalyst also have certain effects on the mechanical properties and temperature resistance of the composites.

19.
RSC Adv ; 8(24): 13178-13185, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35542539

RESUMO

In order to improve the thermal oxidation resistance of carbon fiber-reinforced porous silicon oxycarbide (SiCO) ceramic composites, an Al2O3-containing TaSi2-MoSi2-borosilicate glass coating was formed on the surface of the composites via brushing and sintering. The anti-oxidation property of the coated composites at 1873 K was investigated. Microstructures and chemical compositions of the sample before and after anti-oxidation test were determined using XRD, SEM and EDS. After heating in air at 1873 K for 20 min, the Al2O3-containing TaSi2-MoSi2-borosilicate glass coating effectively protects the SiCO ceramic composites and the coated sample kept its appearance well without obvious defects on the surface. The cross-sectional SEM images show that the coating is covered by a film of oxidation products with a thickness of about 40 µm, which is dense and crack free. Inside the A-TMG coating, irregular-shaped silicides are surrounded by continuous borosilicate glass and no penetrating holes or visible cracks are found. Al2O3 increases the viscosity of the borosilicate glass, which improves oxidation resistance of the coated sample by enhancing gas-penetration resistance of the glass. In contrast, the sample without Al2O3 in the coating slurry is severely oxidized and exhibits lots of open pores on the surface after oxidation test.

20.
ACS Appl Mater Interfaces ; 8(20): 12992-6, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27149155

RESUMO

Polyimide aerogels for low density thermal insulation materials were produced by 4,4'-diaminodiphenyl ether and 3,3',4,4'-biphenyltetracarboxylic dianhydride, cross-linked with 1,3,5-triaminophenoxybenzene. The densities of obtained polyimide aerogels are between 0.081 and 0.141 g cm(-3), and the specific surface areas are between 288 and 322 m(2) g(-1). The thermal conductivities were measured by a Hot Disk thermal constant analyzer. The value of the measured thermal conductivity under carbon dioxide atmosphere is lower than that under nitrogen atmosphere. Under pressure of 5 Pa at -130 °C, the thermal conductivity is the lowest, which is 8.42 mW (m K)(-1). The polyimide aerogels have lower conductivity [30.80 mW (m K)(-1)], compared to the value for other organic foams (polyurethane foam, phenolic foam, and polystyrene foam) with similar apparent densities under ambient pressure at 25 °C. The results indicate that polyimide aerogel is an ideal insulation material for aerospace and other applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...