Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(7): e2308087, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063856

RESUMO

Li and Zn metals are considered promising negative electrode materials for the next generation of rechargeable metal batteries because of their non-toxicity and high theoretical capacity. However, the uneven deposition of metal ions (Li+ , Zn2+ ) and the uncontrolled growth of dendrites result in poor electrochemical stability, unsatisfactory cycle life, and rapid capacity decay of batteries assembled with Li and Zn electrodes. Owing to the unique internal directional channels and abundant redox active sites of covalent organic frameworks (COFs), they can be used to promote uniform deposition of metal ions during stripping/electroplating through interface modification strategies, thereby inhibiting dendrite growth. COFs provide a new perspective in addressing the challenges faced by the anodes of Li metal batteries and Zn ion batteries. This article discusses the stability and types of COFs, and summarizes some novel COF synthesis methods. Additionally, it reviews the latest progress and optimization methods of using COFs for metal anodes to improve battery performance. Finally, the main challenges faced in these areas are discussed. This review will inspire future research on metal anodes in rechargeable batteries.

2.
Molecules ; 28(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985693

RESUMO

Aqueous zinc-ion batteries (AZIBs), the favorite of next-generation energy storage devices, are popular among researchers owing to their environmental friendliness, low cost, and safety. However, AZIBs still face problems of low cathode capacity, fast attenuation, slow ion migration rate, and irregular dendrite growth on anodes. In recent years, many researchers have focused on Zn anode modification to restrain dendrite growth. This review introduces the energy storage mechanism and current challenges of AZIBs, and then some modifying strategies for zinc anodes are elucidated from the perspectives of experiments and theoretical calculations. From the experimental point of view, the modification strategy is mainly to construct a dense artificial interface layer or porous framework on the anode surface, with some research teams directly using zinc alloys as anodes. On the other hand, theoretical research is mainly based on adsorption energy, differential charge density, and molecular dynamics. Finally, this paper summarizes the research progress on AZIBs and puts forward some prospects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...