Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.756
Filtrar
1.
BMC Infect Dis ; 24(1): 683, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982338

RESUMO

INTRODUCTION: Alveolar echinococcosis (AE), caused by the larval forms of Echinococcus multilocularis, is a zoonotic disease affecting the liver, lungs, lymph nodes, kidneys, brain, bones, thyroid, and other organs. Diagnosing AE in a non-endemic area is usually challenging. With the rapid development and increasing application of sequencing techniques in recent years, metagenomic next-generation sequencing (mNGS) has become a powerful tool for diagnosing rare infectious diseases. CASE PRESENTATION: A 45-year-old woman was admitted to the hospital for the presence of pulmonary shadows for more than 3 months. The lung computed tomography (CT) at a local hospital revealed scattered solid and quasi-circular nodules in the left upper lobe, left lower lobe, right middle lobe, and right lower lobe. The largest nodule was located in the dorsal part of the right lung, measuring 2.0 × 1.7 × 1.5 cm. Moreover, abdominal CT revealed one space-occupying lesion each in the left and right lobes. The pathological analysis of the lung biopsy specimen revealed infiltration of lymphocytes, plasma cells, and eosinophils in the alveolar wall and interstitial area. No pathogenic bacteria were observed in the sputum smear and culture tests. There were no parasite eggs in the stool. The mNGS of the lung puncture tissue revealed 6156 sequence reads matching E. multilocularis; thus, the condition was diagnosed as AE. Albendazole 400 mg was administered twice daily, and the patient was stable during follow-up. CONCLUSION: This case emphasizes the role of mNGS in diagnosing AE. As a novel, sensitive, and accurate diagnostic method, mNGS could be an attractive approach for facilitating early diagnosis and prompt treatment of infectious diseases, especially when the infection was caused by rare pathogens.


Assuntos
Equinococose , Echinococcus multilocularis , Sequenciamento de Nucleotídeos em Larga Escala , Pulmão , Metagenômica , Humanos , Feminino , Pessoa de Meia-Idade , Animais , Pulmão/parasitologia , Pulmão/patologia , Pulmão/diagnóstico por imagem , Metagenômica/métodos , Echinococcus multilocularis/genética , Echinococcus multilocularis/isolamento & purificação , Equinococose/diagnóstico , Equinococose/parasitologia , Tomografia Computadorizada por Raios X , Albendazol/uso terapêutico , Equinococose Pulmonar/diagnóstico , Equinococose Pulmonar/parasitologia , Equinococose Pulmonar/diagnóstico por imagem
2.
Biomol Biomed ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972051

RESUMO

Colorectal adenocarcinoma (COAD) is a significant cause of cancer-related mortality worldwide, necessitating the identification of novel therapeutic targets and treatments. This research aimed to investigate the role of ARL3 in COAD progression and to explore the effects of Piperine on ARL3 expression, cell proliferation, epithelial-mesenchymal transition (EMT), and endoplasmic reticulum (ER) stress. Bioinformatics analysis of The Cancer Genome Atlas (TCGA)-COAD, GSE39582, and GSE44861 datasets assessed ARL3 expression levels. Immunohistochemical data from the Human Protein Atlas (HPA) database confirmed ARL3 overexpression in COAD. The association of ARL3 with COAD clinical parameters and prognosis was also examined. COAD cells were treated with Piperine, and in vitro assays evaluated cell proliferation, apoptosis, EMT marker expression, and ER stress responses. ARL3 overexpression in COAD correlated with poor prognosis and varied across pathological stages. Piperine treatment inhibited COAD cell proliferation in a concentration- and time-dependent manner, as indicated by reduced Ki-67 levels and decreased colony-forming ability. Piperine induced S-phase cell cycle arrest and facilitated apoptosis in COAD cells, evidenced by changes in Bax, Bcl-2, cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase (PARP) levels. Moreover, Piperine downregulated ARL3 expression in COAD cells, thereby suppressing transforming growth factor beta (TGF-ß)-induced EMT. Additionally, Piperine attenuated the ARL3-mediated ER stress response, significantly reducing binding immunoglobulin protein (BiP), inositol-requiring enzyme 1 alpha (p-IRE1α), activating transcription factor 6 (ATF6), and C/EBP homologous protein (CHOP) levels. Piperine exerted anti-cancer effects in COAD by modulating ARL3 expression, disrupting cell cycle progression, inhibiting the EMT pathway, and regulating ER stress. These findings suggest that Piperine holds promise as a therapeutic agent for COAD through its targeting of ARL3.

4.
Proc Natl Acad Sci U S A ; 121(28): e2322972121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968116

RESUMO

Rapid accumulation of repair factors at DNA double-strand breaks (DSBs) is essential for DSB repair. Several factors involved in DSB repair have been found undergoing liquid-liquid phase separation (LLPS) at DSB sites to facilitate DNA repair. RNF168, a RING-type E3 ubiquitin ligase, catalyzes H2A.X ubiquitination for recruiting DNA repair factors. Yet, whether RNF168 undergoes LLPS at DSB sites remains unclear. Here, we identified K63-linked polyubiquitin-triggered RNF168 condensation which further promoted RNF168-mediated DSB repair. RNF168 formed liquid-like condensates upon irradiation in the nucleus while purified RNF168 protein also condensed in vitro. An intrinsically disordered region containing amino acids 460-550 was identified as the essential domain for RNF168 condensation. Interestingly, LLPS of RNF168 was significantly enhanced by K63-linked polyubiquitin chains, and LLPS largely enhanced the RNF168-mediated H2A.X ubiquitination, suggesting a positive feedback loop to facilitate RNF168 rapid accumulation and its catalytic activity. Functionally, LLPS deficiency of RNF168 resulted in delayed recruitment of 53BP1 and BRCA1 and subsequent impairment in DSB repair. Taken together, our finding demonstrates the pivotal effect of LLPS in RNF168-mediated DSB repair.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Humanos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Ubiquitina/metabolismo , Histonas/metabolismo , Histonas/genética , Poliubiquitina/metabolismo
5.
Cell Signal ; : 111283, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960059

RESUMO

It has been demonstrated that circular RNAs (circRNAs) are associated with the development of diabetic retinopathy (DR). Nevertheless, the function of circSLC16A10 in the development of DR remains unclear. In order to investigate the role of circSLC16A10, we employed cell and animal models of DR. An analysis of a public database revealed that hsa_circSLC16A10 was expressed at lower levels in DR patients than in diabetic patients without DR or healthy controls. Additionally, the level of hsa_circSLC16A10 was lower in high glucose (HG)-exposed ARPE-19 cells and diabetic mice. hsa_circSLC16A10 was observed to be mainly distributed in the cytoplasm. Moreover, overexpression of hsa_circSLC16A10 alleviated HG-induced endoplasmic reticulum stress and cell apoptosis in vitro. Furthermore, overexpression of hsa_circSLC16A10 ameliorated HG-induced mitochondrial dysfunction, as evidenced by improvements in mitochondrial structure and function. Hsa_circSLC16A10 acted as a hsa-miR-761-5p sponge to increase MFN2 expression. MFN2 knockdown or hsa-miR-761-5p overexpression partially reversed the protective effect of hsa_circSLC16A10 in vitro. The protective effect of mmu_circSLC16A10 against DR was confirmed in an animal model of DR. These findings indicate that circSLC16A10 may regulate DR progression by improving mitochondrial function via the miR-761-5p/MFN2 axis.

6.
Eur J Med Chem ; 275: 116581, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38870831

RESUMO

Nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) constitutes an essential inflammasome sensor protein, pivotal in the orchestration of innate immunity. Given its paramount role, NLRP3 has recently emerged as an enticing therapeutic target for disorders associated with inflammation. In this study, we embarked on the design and synthesis of two series of compounds, endowed with the capacity to induce NLRP3 degradation via autophagy-tethering compounds (ATTECs)-an innovative targeted protein degradation technology. Notably, MC-ND-18 emerged as the most potent agent for effectuating NLRP3 degradation through autophagic mechanisms and concurrently exhibited marked anti-inflammatory efficacy in mice model of dextran sulfate sodium (DSS)-induced colitis. Consequently, we have successfully developed a pioneering NLRP3 protein degrader, offering a novel therapeutic avenue for ameliorating NLRP3-associated pathologies.

7.
Exp Brain Res ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896294

RESUMO

Neuroinflammation and microglia polarization play pivotal roles in brain injury induced by intracerebral hemorrhage (ICH). Despite the well-established involvement of CXC motif chemokine ligand 16 (CXCL16) in regulating inflammatory responses across various diseases, its specific functions in the context of neuroinflammation and microglial polarization following ICH remain elusive. In this study, we investigated the impact of CXCL16 on neuroinflammation and microglia polarization using both mouse and cell models. Our findings revealed elevated CXCL16 expression in mice following ICH and in BV2 cells after lipopolysaccharide (LPS) stimulation. Specific silencing of CXCL16 using siRNA led to a reduction in the expression of neuroinflammatory factors, including IL-1ß and IL-6, as well as decreased expression of the M1 microglia marker iNOS. Simultaneously, it enhanced the expression of anti-inflammatory factors such as IL-10 and the M2 microglia marker Arg-1. These results were consistent across both mouse and cell models. Intriguingly, co-administration of the PI3K-specific agonist 740 Y-P with siRNA in LPS-stimulated cells reversed the effects of siRNA. In conclusion, silencing CXCL16 can positively alleviate neuroinflammation and M1 microglial polarization in BV2 inflammation models and ICH mice. Furthermore, in BV2 cells, this beneficial effect is mediated through the PI3K/Akt pathway. Inhibition of CXCL16 could be a novel approach for treating and diagnosing cerebral hemorrhage.

8.
Neurol Sci ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879831

RESUMO

Increasing evidence indicate that neuroinflammation triggered by glial cells plays a significant role in epileptogenesis. To this effect, the overexpression of translocator protein 18 kDa (TSPO) in activated microglia and astrocytes has been identified as an inflammatory biomarker in epilepsy. It is now possible to quantify neuroinflammation using non-invasive positron emission tomography (PET) imaging of TSPO. With the advancement of radiotracers, TSPO PET has become an innovative tool in elucidating the "neuroinflammatory machinery" of drug-resistant epilepsy. Furthermore, TSPO PET has demonstrated potential in detecting MRI-negative epileptogenic zones (EZ) and provided an innovative perspective in epileptic medical treatment. This manuscript presents a comprehensive exploration of the neuroinflammatory mechanisms of epilepsy, alongside a thorough review of TSPO PET studies conducted in clinical and preclinical settings. The primary objective is to deepen our understanding of epilepsy progression and to establish TSPO PET as an effective monitoring tool for treatment efficacy.

9.
ACS Nano ; 18(24): 15661-15670, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38841753

RESUMO

Methanogenic archaea, characterized by their cell membrane lipid molecules consisting of isoprenoid chains linked to glycerol-1-phosphate via ether bonds, exhibit exceptional adaptability to extreme environments. However, this distinct lipid architecture also complicates the interactions between methanogenic archaea and nanoparticles. This study addresses this challenge by exploring the interaction and transformation of selenium nanoparticles (SeNPs) within archaeal Methanosarcina acetivorans C2A. We demonstrated that the effects of SeNPs are highly concentration-dependent, with chemical stimulation of cellular processes at lower SeNPs concentrations as well as oxidative stress and metabolic disruption at higher concentrations. Notably, we observed the formation of a protein corona on SeNPs, characterized by the selective adsorption of enzymes critical for methylotrophic methanogenesis and those involved in selenium methylation, suggesting potential alterations in protein function and metabolic pathways. Furthermore, the intracellular transformation of SeNPs into both inorganic and organic selenium species highlighted their bioavailability and dynamic transformation within archaea. These findings provide vital insights into the nano-bio interface in archaeal systems, contributing to our understanding of archaeal catalysis and its broader applications.


Assuntos
Methanosarcina , Nanopartículas , Selênio , Selênio/química , Selênio/metabolismo , Methanosarcina/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Estresse Oxidativo
10.
Discov Oncol ; 15(1): 227, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874696

RESUMO

PURPOSE: To assess the prognostic value of three novel biomarkers, DNA ploidy, stroma-tumor fraction, and nucleotyping, seeking for more accurate stratification in stage II colon cancer. METHODS: A total of 417 patients with complete follow up information were enrolled in this study and divided into three clinical risk groups. IHC was performed to examine MSI status. DNA ploidy, stroma and nucleotyping were estimated using automated digital imaging system. Kaplan-Meier survival curves, Cox proportional hazards regression models, and correlation analyses were carried out to process our data. RESULTS: In the whole cohort of stage II colon cancer, nucleotyping and DNA ploidy were significant prognostic factors on OS in univariate analyses. The combination of nucleotyping and DNA ploidy signified superior OS and DFS. Difference was not significant between low-stroma and high-stroma patients. In multivariable analyses, nucleotyping and the combination of nucleotyping and DNA ploidy were proven the dominant contributory factors for OS. In the low-risk group, we found the combination of nucleotyping and DNA ploidy as the independent prognostic factor statistically significant in both univariate and multivariable, while in the high-risk group, the nucleotyping. CONCLUSIONS: Our study has proven nucleotyping and the combination of DNA ploidy and nucleotyping as independent prognostic indicators, thus expanding the application of nucleotyping as a predictor from high risk stage II colon cancer to whole risks.

11.
Epilepsy Behav ; 157: 109887, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38905916

RESUMO

AIM: To explore multiple features of attention impairments in patients with temporal lobe epilepsy (TLE). METHODS: A total of 93 patients diagnosed with TLE at Xiangya Hospital during May 2022 and December 2022 and 85 healthy controls were included in this study. Participants were asked to complete neuropsychological scales and attention network test (ANT) with recording of eye-tracking and electroencephalogram. RESULTS: All means of evaluation showed impaired attention functions in TLE patients. ANT results showed impaired orienting (p < 0.001) and executive control (p = 0.041) networks. Longer mean first saccade time (p = 0.046) and more total saccadic counts (p = 0.035) were found in eye-tracking results, indicating abnormal alerting and orienting networks. Both alerting, orienting and executive control networks were abnormal, manifesting as decreased amplitudes (N1 & P3, p < 0.001) and extended latency (P3, p = 0.002). The energy of theta, alpha and beta were all sensitive to the changes of alerting and executive control network with time, but only beta power was sensitive to the changes of orienting network. CONCLUSION: Our findings are helpful for early identification of patients with TLE combined with attention impairments, which have strong clinical guiding significance for long-term monitoring and intervention.

12.
Future Microbiol ; : 1-10, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899531

RESUMO

Aim: To investigate the impact of human herpes virus (HHV) carriage on lung microbiota, and its correlation with clinical features and laboratory indicators in patients. Methods: Retrospective analysis was conducted on 30 outpatient lung infection cases, which were divided into HHV (n = 15) and non-HHV (n = 15) groups. mNGS detected microbial composition. Microbial diversity and abundance were tested using Shannon and Chao1 indices. Their relationship with laboratory indicators were explored. Results: Significant differences in microbial abundance and distribution were found between two groups (p < 0.05). Moreover, HHV group showed negative correlations (p < 0.05) between Prevotella, Porphyromonas, Streptococcus and basophil/eosinophil percentages. Conclusion: HHV carriage impacts lung microbiota, emphasizing the need for clinicians to pay attention to HHV reactivation in outpatient lung infection patients.


This study looked at how a common virus called human herpesvirus (HHV) affects the bacteria in our lungs. We wanted to see if HHV is linked to how sick we feel and what tests show. We split 30 people who had lung infections into two groups ­ 15 with HHV and 15 without ­ and checked how sick they felt, did some tests, and looked at the types of bacteria in their lungs. Both groups felt similarly sick and got better with medicine, but people with HHV had fewer of a certain type of blood cell. People with and without HHV also had different types of bacteria in their lungs. This study helps us understand why people get sick with lung infections and how to make them better. It might also help doctors decide how to treat people with lung infections.

13.
J Med Virol ; 96(6): e29765, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924102

RESUMO

This study aims to investigate the significant relationship between serum heavy metals (lead [Pb], cadmium [Cd], mercury [Hg]) and the risk of herpes simplex virus type 1 (HSV-1) infection. Data were derived from the National Health and Nutrition Examination Survey (NHANES) conducted in the United States from 2007 to 2016. This nationally representative survey, conducted by the National Center for Health Statistics, assessed the health status of participants through interviews, physical examinations, and laboratory tests. After excluding participants lacking serum Pb, Cd, and Hg data, as well as those missing HSV-1 testing data and pregnant women, the analysis included 13 772 participants, among whom 3363 were adolescents. A survey-weighted multivariate logistic regression model was used to evaluate the association between heavy metal exposure and the risk of HSV-1 infection, and to explore the dose-response relationship between them. In adults and adolescents, serum concentrations of Pb and Cd were higher in those infected with HSV-1 than in those not infected. However, an increase in serum Hg concentration was observed only in infected adolescents. After adjusting for potential confounders, elevated serum Pb and Cd concentrations in adults were associated with an increased risk of HSV-1 infection. Higher serum Pb and Cd concentrations were associated with an increased risk of HSV-2 infection, irrespective of HSV-1 infection status. In adults, serum concentrations of Pb and Hg showed an approximately linear relationship with HSV-1 infection risk (p for nonlinearity > 0.05), whereas the dose-response relationship between serum Cd concentration and HSV-1 infection was nonlinear (p for nonlinearity = 0.004). In adolescents, serum concentrations of heavy metals (Pb, Cd, Hg) showed an approximately linear relationship with HSV-1 infection (p for nonlinearity > 0.05). Furthermore, the study examined the relationship between serum heavy metal levels and the risk of HSV-1 infection across different genders, races, income levels, weight statuses, and immune statuses. In conclusion, there is a significant association between serum heavy metal concentrations and HSV-1 infection, which warrants further investigation into the causal relationship between them.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Metais Pesados , Inquéritos Nutricionais , Humanos , Feminino , Masculino , Estudos Transversais , Adolescente , Metais Pesados/sangue , Metais Pesados/efeitos adversos , Herpes Simples/epidemiologia , Herpes Simples/sangue , Adulto , Adulto Jovem , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Cádmio/sangue , Cádmio/efeitos adversos , Chumbo/sangue , Mercúrio/sangue , Criança , Fatores de Risco , Exposição Ambiental/efeitos adversos , Idoso
14.
Food Chem ; 457: 140087, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38917568

RESUMO

This work presents an innovative solid sampling (SS) integrated electrothermal vaporization (ETV) approach for simultaneous determination of Cd and Hg based on differentiated elemental vaporization and transportation behavior characteristics. A miniature N2/H2 generator, only consuming electricity and H2O, was utilized to yield reducing atmosphere for Cd vaporization; MgO filler was modified to absorb matrix interferent and keep Hg and Cd transportation via 1st catalytic pyrolysis furnace (CPF); and a gearing was employed to move 2nd CPF to receive and trap (amalgamation) the vaporized Hg from ETV and then thermo-release them for simultaneous detection. Under optimized conditions, the limits of detection of Cd and Hg reached 0.02-0.04 ng/g using 0.4 g sample size. The linearities (R2) exceeded 0.998 and recoveries were 85.0-111.9%, indicating favorable analysis precision and accuracy within ∼3 min without sample digestion process. The proposed HgCd analyzer is suitable for rapid monitoring food with simplicity, green and safety.

15.
Sci Total Environ ; 945: 174041, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906284

RESUMO

Loess regions face significant challenges in quantifying hydrological processes and assessing geological environmental risks due to the prevalent development of preferential pathways and the limitations of existing monitoring technologies. To advance this knowledge, this study presents an improved electrical resistivity tomography (ERT) device, specifically designed for loess moisture observations. By refining the testing principle, power supply mode, and data collection method within the existing ERT framework, the new device offers unmanned operation, automatic data acquisition, remote transmission, and cost efficiency. It effectively tracks water movement and groundwater level fluctuations across various hydrological conditions, supporting long-term online monitoring of hydrological processes of loess slopes. Through the analysis of monitoring data and classification of 12 observed preferential flow types, water movement in loess systems can be generalized into four general patterns: uniform infiltration, preferential infiltration, inflowing diffusion, and lateral flow. This generalized scheme provides a simplified modeling approach for other researchers to quantify slope hydrodynamics and to assess geological safety risks involving preferential flow. Based on these insights and field investigations, a conceptual framework is proposed to elucidate the seepage-structure synergistic initiating mechanism of loess landslides. This framework suggests that water entry and movement patterns within the slope depend on the slope geological structure related to preferential pathways and the prevailing hydrological scenarios. Landslide occurs as the result of the progressive failure and reciprocal evolution between the slope hydrological environments and geological structure, which may also pose potential eco-hydrological risks. The outcome advances the development of slope hydrological monitoring technology and enhances the understanding of water movement laws and the associated geological environmental risks in loess slope systems, which is of vital importance to the early warning methods of loess landslides that account for preferential flow and for theoretical modeling of preferential flow in related disciplines.

16.
Sci Data ; 11(1): 599, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849406

RESUMO

Camellia crapnelliana Tutch., belonging to the Theaceae family, is an excellent landscape tree species with high ornamental values. It is particularly an important woody oil-bearing plant species with high ecological, economic, and medicinal values. Here, we first report the chromosome-scale reference genome of C. crapnelliana with integrated technologies of SMRT, Hi-C and Illumina sequencing platforms. The genome assembly had a total length of ~2.94 Gb with contig N50 of ~67.5 Mb, and ~96.34% of contigs were assigned to 15 chromosomes. In total, we predicted 37,390 protein-coding genes, ~99.00% of which could be functionally annotated. The chromosome-scale genome of C. crapnelliana will become valuable resources for understanding the genetic basis of the fatty acid biosynthesis, and greatly facilitate the exploration and conservation of C. crapnelliana.


Assuntos
Camellia , Genoma de Planta , Camellia/genética , Cromossomos de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala
17.
Opt Express ; 32(12): 20669-20681, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859443

RESUMO

Efficient coupling in broad wavelength range is desirable for wide-spectrum infrared light detection, yet this is a challenge for intersubband transition in semiconductor quantum wells (QWs). High-Q cavities mostly intensify the absorption at peak wavelengths but with shrinking bandwidth. Here, we propose a novel approach to expand the operating spectral range of the Quantum Well Infrared Photodetectors (QWIPs). By processing the QWs into asymmetric micro-pillar array structure, the device demonstrates a substantial enhancement in spectral response across the wavelength from 7.1 µm to 12.3 µm with guided mode resonance (GMR) effects. The blackbody responsivity is then increased by 3 times compared to that of the 45° polished edge-coupled counterpart. Meanwhile, the dark current density remains unchanged after the deep etching process, which will benefit the electrical performance of the detector with reduced volume duty ratio. In contrast to the symmetric micro-pillar array that contains simple resonance mode, the detectivity of QWIP in asymmetric pillar structure is found to be improved by 2-4 times within the range of 9.5 µm to 15 µm.

18.
Int J Biol Macromol ; 273(Pt 1): 133084, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38871104

RESUMO

Salinity hinders plant growth and development, resulting in reduced crop yields and diminished crop quality. Nitric oxide (NO) and brassinolides (BR) are plant growth regulators that coordinate a plethora of plant physiological responses. Nonetheless, the way in which these factors interact to affect salt tolerance is not well understood. BR is perceived by the BR receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) and its co-receptor BRI1-associated kinase 1 (BAK1) to form the receptor complex, eventually inducing BR-regulated responses. To response stress, a wide range of NO-mediated protein modifications is undergone in eukaryotic cells. Here, we showed that BR participated in NO-enhanced salt tolerance of tomato seedlings (Solanum lycopersicum cv. Micro-Tom) and NO may activate BR signaling under salt stress, which was related to NO-mediated S-nitrosylation. Further, in vitro and in vivo results suggested that BAK1 (SERK3A and SERK3B) was S-nitrosylated, which was inhibited under salt condition and enhanced by NO. Accordingly, knockdown of SERK3A and SERK3B reduced the S-nitrosylation of BAK1 and resulted in a compromised BR response, thereby abolishing NO-induced salt tolerance. Besides, we provided evidence for the interaction between BRI1 and SERK3A/SERK3B. Meanwhile, NO enhanced BRI1-SERK3A/SERK3B interaction. These results imply that NO-mediated S-nitrosylation of BAK1 enhances the interaction BRI1-BAK1, facilitating BR response and subsequently improving salt tolerance in tomato. Our findings illustrate a mechanism by which redox signaling and BR signaling coordinate plant growth in response to abiotic stress.


Assuntos
Óxido Nítrico , Proteínas de Plantas , Tolerância ao Sal , Plântula , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Plântula/metabolismo , Tolerância ao Sal/genética , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Brassinosteroides/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Regulação da Expressão Gênica de Plantas , Estresse Salino , Transdução de Sinais
20.
Water Res ; 260: 121962, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38941867

RESUMO

Dissolved black carbon (DBC) released from biochar, is an essential group in the dissolved organic matter (DOM) pool and is widely distributed in aquatic environments. In various advanced oxidation processes (AOPs), DBC exhibits enhanced free radical scavenging compared to typical DOM, attributed to its smaller molecular weight and more compacted aromatic structure; however, the molecular-level transformations of DBC in different AOPs, such as UV/H2O2, UV/PDS, and UV/Chlorine, remain unclear. This study employed a DBC derived from wheat biochar for experimentation. Characterization involved ultraviolet-visible (UV-Vis) spectroscopy and fluorescence excitation-emission-matrix (EEM) spectroscopy, revealing the transformation of DBC through diminished SUVA254 values and reduced intensity of three-dimensional fluorescence peaks. Further insights into the transformation were gained through Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). After each UV-AOP treatment, a conspicuous augmentation in the oxygen content of DBC was observed. The detailed oxygenation processes were elucidated through mass difference analysis, based on 23 types of typical reactions. Results indicated that oxygenation reactions were most frequently detected in all three UV-AOP treatments. Specifically, the hydroxylation (+O) predominated in UV/H2O2, while the di-hydroxylation (+2O) prevailed in UV/PDS. UV/Chlorine treatments commonly exhibited tri-hydroxylation (+3O), with the identification of 1194 Cl-BPs of unknown structures. This study contributes to a comprehensive understanding of the molecular transformations of DBC induced by various free radicals in different UV-AOP processes, leading to a better understanding of the different fates of DBC in UV-AOP processes. In addition, the identification of DBC as a precursor of by-products will also contribute to the understanding of how to inhibit the generation of by-products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...