Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 45(1): 36-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37684382

RESUMO

The gut-brain axis plays a vital role in Parkinson's disease (PD). The mechanisms of gut-brain transmission mainly focus on α-synuclein deposition, intestinal inflammation and microbiota function. A few studies have shown the trigger of PD pathology in the gut. α-Synuclein is highly conserved in food products, which was able to form ß-folded aggregates and to infect the intestinal mucosa. In this study we investigated whether α-synuclein-preformed fibril (PFF) exposure could modulate the intestinal environment and induce rodent models replicating PD pathology. We first showed that PFF could be internalized into co-cultured Caco-2/HT29/Raji b cells in vitro. Furthermore, we demonstrated that PFF perfusion caused the intestinal inflammation and activation of enteric glial cells in an ex vivo intestinal organ culture and in an in vivo intestinal mouse coloclysis model. Moreover, we found that PFF exposure through regular coloclysis induced PD pathology in wild-type (WT) and A53T α-synuclein transgenic mice with various phenotypes. Particularly in A53T mice, PFF induced significant behavioral disorders, intestinal inflammation, α-synuclein deposition, microbiota dysbiosis, glial activation as well as degeneration of dopaminergic neurons in the substantia nigra. In WT mice, however, the PFF induced only mild behavioral abnormalities, intestinal inflammation, α-synuclein deposition, and glial activation, without significant changes in microbiota and dopaminergic neurons. Our results reveal the possibility of α-synuclein aggregates binding to the intestinal mucosa and modeling PD in mice. This study may shed light on the investigation and early intervention of the gut-origin hypothesis in neurodegenerative diseases.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Camundongos , Animais , alfa-Sinucleína/metabolismo , Células CACO-2 , Transtornos Parkinsonianos/metabolismo , Doença de Parkinson/metabolismo , Camundongos Transgênicos , Neurônios Dopaminérgicos/metabolismo , Inflamação/metabolismo
2.
Mol Psychiatry ; 28(9): 3955-3965, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37798418

RESUMO

Diabetic patients receiving the antidiabetic drug metformin have been observed to exhibit a lower prevalence of anxiety disorders, yet the precise mechanism behind this phenomenon is unclear. In our study, we found that anxiety induces a region-specific reduction in AMPK activity in the medial prefrontal cortex (mPFC). Concurrently, transgenic mice with brain-specific AMPK knockout displayed abnormal anxiety-like behaviors. Treatment with metformin or the overexpression of AMPK restored normal AMPK activity in the mPFC and mitigated social stress-induced anxiety-like behaviors. Furthermore, the specific genetic deletion of AMPK in the mPFC not only instigated anxiety in mice but also nullified the anxiolytic effects of metformin. Brain slice recordings revealed that GABAergic excitation and the resulting inhibitory inputs to mPFC pyramidal neurons were selectively diminished in stressed mice. This reduction led to an excitation-inhibition imbalance, which was effectively reversed by metformin treatment or AMPK overexpression. Moreover, the genetic deletion of AMPK in the mPFC resulted in a similar defect in GABAergic inhibitory transmission and a consequent hypo-inhibition of mPFC pyramidal neurons. We also generated a mouse model with AMPK knockout specific to GABAergic neurons. The anxiety-like behaviors in this transgenic mouse demonstrated the unique role of AMPK in the GABAergic system in relation to anxiety. Therefore, our findings suggest that the activation of AMPK in mPFC inhibitory neurons underlies the anxiolytic effects of metformin, highlighting the potential of this primary antidiabetic drug as a therapeutic option for treating anxiety disorders.


Assuntos
Ansiolíticos , Metformina , Humanos , Camundongos , Animais , Ansiolíticos/farmacologia , Proteínas Quinases Ativadas por AMP/farmacologia , Metformina/farmacologia , Hipoglicemiantes/farmacologia , Córtex Pré-Frontal , Neurônios GABAérgicos
3.
Theranostics ; 13(14): 4936-4951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771782

RESUMO

Neuroinflammation is considered to drive the pathogenic process of neuronal degeneration in Parkinson's disease (PD). However, effective anti-neuroinflammation therapeutics for PD still remain dissatisfactory. Here we explore a robust therapeutic strategy for PD using anti-neuroinflammatory fullerenes. Methods: Oral fullerene was prepared by a ball-milling method. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model was used to investigate the therapeutic effects and mechanisms of it. The gut microenvironment was evaluated by 16S rRNA gene sequencing, gas chromatography-mass spectrometry, quantitative polymerase chain reaction (Q-PCR), and western blot (WB). The neuroinflammation and neurodegeneration were evaluated by pathological analysis, Elisa kits, transmission electron microscopy, Q-PCR, WB and so on. Toxicity was assessed by weight, blood test and hematoxylin-eosin (HE) staining. Results: Oral fullerene therapeutic system that dissolved [60]fullerene into olive oil (abbreviated as OFO) was dexterously designed, which could reduce neuroinflammation via regulating the diversity of gut microbiome, increasing the contents of short chain fatty acids (SCFAs) and recovering the integrity of gut barrier. Accordingly, the reduction of neuroinflammation prevented dopaminergic neuronal degeneration. And thus, OFO significantly ameliorated motor deficits and fundamentally reversed dopamine (DA) loss in MPTP-induced PD mice. Of note, OFO exhibited low toxicity towards the living body. Conclusion: Our findings suggest that OFO is a safe-to-use, easy-to-apply, and prospective candidate for PD treatment in clinic, opening a therapeutic window for neuroinflammation-triggered neurodegeneration.

4.
Acta Pharmacol Sin ; 44(6): 1122-1134, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36627343

RESUMO

Aggregation of α-synuclein, a component of Lewy bodies (LBs) or Lewy neurites in Parkinson's disease (PD), is strongly linked with disease development, making it an attractive therapeutic target. Inhibiting aggregation can slow or prevent the neurodegenerative process. However, the bottleneck towards achieving this goal is the lack of such inhibitors. In the current study, we established a high-throughput screening platform to identify candidate compounds for preventing the aggregation of α-synuclein among the natural products in our in-house compound library. We found that a small molecule, 03A10, i.e., (+)-desdimethylpinoresinol, which is present in the fruits of Vernicia fordii (Euphorbiaceae), modulated aggregated α-synuclein, but not monomeric α-synuclein, to prevent further elongation of α-synuclein fibrils. In α-synuclein-overexpressing cell lines, 03A10 (10 µM) efficiently prevented α-synuclein aggregation and markedly ameliorated the cellular toxicity of α-synuclein fibril seeds. In the MPTP/probenecid (MPTP/p) mouse model, oral administration of 03A10 (0.3 mg· kg-1 ·d-1, 1 mg ·kg-1 ·d-1, for 35 days) significantly alleviated behavioral deficits, tyrosine hydroxylase (TH) neuron degeneration and p-α-synuclein aggregation in the substantia nigra (SN). As the Braak hypothesis postulates that the prevailing site of early PD pathology is the gastrointestinal tract, we inoculated α-synuclein preformed fibrils (PFFs) into the mouse colon. We demonstrated that α-synuclein PFF inoculation promoted α-synuclein pathology and neuroinflammation in the gut and brain; oral administration of 03A10 (5 mg· kg-1 ·d-1, for 4 months) significantly attenuated olfactory deficits, α-synuclein accumulation and neuroinflammation in the olfactory bulb and SN. We conclude that 03A10 might be a promising drug candidate for the treatment of PD. 03A10 might be a novel drug candidate for PD treatment, as it inhibits α-synuclein aggregation by modulating aggregated α-synuclein rather than monomeric α-synuclein to prevent further elongation of α-synuclein fibrils and prevent α-synuclein toxicity in vitro, in an MPTP/p mouse model, and PFF-inoculated mice.


Assuntos
Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Doenças Neuroinflamatórias , Substância Negra/metabolismo , Substância Negra/patologia , Encéfalo/metabolismo
5.
Biochem Biophys Res Commun ; 611: 23-30, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35472607

RESUMO

Dementia with Lewy bodies (DLB) is the second most common type of neurodegenerative dementia after Alzheimer's disease (AD). Neuroinflammation plays an important role in neurodegenerative diseases. It is urgent to unravel the pathogenesis of DLB and find potential therapeutic drugs. Here, we investigated the pharmacological effects of the NLRP3 inflammasome inhibitor MCC950 in A53T α-synuclein transgenic line M83 mice aged 4 months. The behavioral tests including Y-maze, Barnes maze, nest building and Rotarod showed that MCC950 significantly improved the cognitive dysfunction symptom without affecting the motor coordination after consecutive intragastric administration every day for 5 weeks. Furthermore, immunostaining or immunoblotting experiments on the hippocampal tissue were performed, and the results suggested that MCC950 not only inhibited the expression of NLRP3, and suppressed the activation of astrocytes and microglia, but also promoted the mTOR-mediated autophagy pathway to reduce human α-synuclein accumulation. Our findings further demonstrate that line M83 mice may be used as an animal model for DLB research, and can provide preclinical evidences for the development of MCC950 as a promising therapeutic drug.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Animais , Modelos Animais de Doenças , Furanos , Hipocampo/metabolismo , Indenos , Doença por Corpos de Lewy/metabolismo , Camundongos , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sulfonamidas , alfa-Sinucleína/metabolismo
6.
Brain Res Bull ; 182: 118-129, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35182691

RESUMO

Dementia with Lewy body (DLB) is the second most common degenerative dementia after Alzheimer's disease. There is no therapeutic drug for DLB currently. It's urgent for us to understand the pathological mechanism of dementia mediated by α-synuclein, as the main component of Lewy body. Here, we found that the A53T α-synuclein transgenic mice showed decreased nesting behavior starting from the age of 1 month. The results in Morris water maze test suggested that the 6-month-old mice had learning memory deficits. Golgi staining indicated that the apical neuronal dendritic spines of hippocampal CA1 neurons were significantly reduced in 6-month-old homozygotes and heterozygotes, although MAP2 protein expression revealed no significant difference in the hippocampus among wild-type mice, homozygotes and heterozygotes. In vitro, we proved mutant A53T α-synuclein decreased the dendritic branches and dendrite spines on the embryonic mice hippocampal neurons. Furthermore, Ki67 immunofluorescence staining identified that the Ki67-positive cells of the hippocampal dentate gyrus and subventricular zone were significantly reduced in 6-month-old homozygotes and heterozygotes, compared with age-matched wild-type mice. Similarly, when 6-month-old mice were injected with BrdU for one day, the immunostaining results also confirmed that BrdU-positive cells were significantly reduced in homozygous and heterozygous mice. Lastly, we transfected primary embryonic hippocampal neural stem cells with lentivirus vector expressing A53T α-synuclein in vitro. Both BrdU staining and Western blotting showed that A53T α-synuclein significantly decreased the proliferation of embryonic neural stem cells. Taken together, these data suggest that A53T α-synuclein can induce adult neurogenesis impairment and cognitive dysfunction. The A53T α-synuclein transgenic mice may be used as an animal model for DLB. Promoting adult neurogenesis may be a promising approach to treat DLB pathogenesis.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Células-Tronco Neurais , alfa-Sinucleína/metabolismo , Animais , Bromodesoxiuridina , Proliferação de Células , Antígeno Ki-67 , Camundongos , Camundongos Transgênicos , Neurogênese , alfa-Sinucleína/genética
7.
Acta Pharmacol Sin ; 43(2): 273-284, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33976387

RESUMO

Paeoniflorin (PF), a bioactive monoterpene glucoside, has shown a variety of pharmacological effects such as anti-inflammation and autophagy modulation etc. In this study, we investigated whether and how PF exerted a protective effect against ischemic brain injury in vivo and in vitro. Primary rat cortical neurons underwent oxygen/glucose deprivation/reperfusion (OGD/R) for 90 min. We showed that after OGD/R, a short fragment of histone deacetylase 4 (HDAC4) produced by caspase3-mediated degradation was markedly accumulated in the nucleus and the activity of caspase3 was increased. Treatment with PF (100 nM, 1 µM) significantly improved the viability of cortical neurons after OGD/R. Furthermore, PF treatment could maintain HDAC4 intrinsic subcellular localization and reduce the caspase3 activity without changing the HDAC4 at the transcriptional level. PF treatment significantly reduced OGD/R-caused inhibition of transcriptional factor MEF2 expression and increased the expression of downstream proteins such as GDNF, BDNF, and Bcl-xl, thus exerting a great anti-apoptosis effect as revealed by TUNEL staining. The beneficial effects of PF were almost canceled in HDAC4 (D289E)-transfected PC12 cells after OGD/R. In addition, PF treatment reduced the caspase9 activity, rescued the release of cytochrome c from mitochondria, and maintained the integrity of mitochondria membrane. We conducted in vivo experiments in 90-min-middle cerebral artery occlusion (MCAO) rat model. The rats were administered PF (20, 40 mg/kg, ip, 3 times at the reperfusion, 24 h and 48 h after the surgery). We showed that PF administration dose-dependently reduced infarction area, improved neurological symptoms, and maintained HDAC4 localization in rats after MCAO. These results demonstrate that PF is effective in protecting against ischemic brain injury and inhibit apoptosis through inhibiting the cytochrome c/caspase3/HDAC4 pathway.


Assuntos
Anti-Inflamatórios/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Citocromos c/metabolismo , Glucosídeos/uso terapêutico , Histona Desacetilases/metabolismo , Monoterpenos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Isquemia Encefálica/metabolismo , Caspase 3/metabolismo , Modelos Animais de Doenças , Masculino , Teste do Labirinto Aquático de Morris , Teste de Campo Aberto , Ratos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod
8.
J Pharmacol Exp Ther ; 378(1): 20-30, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33975897

RESUMO

TPN672 [7-(2-(4-(benzothiophen-4-yl) piperazin-1-yl)ethyl)quinolin-2(1H)-one maleate] is a novel antipsychotic candidate with high affinity for serotonin and dopamine receptors that is currently in clinical trial for the treatment of psychiatric disorders. In vitro binding study showed that TPN672 exhibited extremely high affinity for serotonin 1A receptor (5-HT1AR) (K i = 0.23 nM) and 5-HT2AR (K i = 2.58 nM) as well as moderate affinity for D3R (K i = 11.55 nM) and D2R (K i = 17.91 nM). In vitro functional assays demonstrated that TPN672 acted as a potent 5-HT1AR agonist, D2R/D3R partial agonist, and 5-HT2AR antagonist. TPN672 displayed robust antipsychotic efficacy in rodent models (e.g., blocking phencyclidine-induced hyperactivity), significantly better than aripiprazole, and ameliorated negative symptoms and cognitive deficits in the sociability test, dark avoidance response, Morris water maze test, and novel object recognition test. The results of electrophysiological experiments showed that TPN672 might inhibit the excitability of the glutamate system through activating 5-HT1AR in medial prefrontal cortex, thereby improving cognitive and negative symptoms. Moreover, the safety margin (the ratio of minimum catalepsy-inducing dose to minimum effective dose) of TPN672 was about 10-fold, which was superior to aripiprazole. In conclusion, TPN672 is a promising new drug candidate for the treatment of schizophrenia and has been shown to be more effective in attenuating negative symptoms and cognitive deficits while having lower risk of extrapyramidal symptoms and hyperprolactinemia. SIGNIFICANCE STATEMENT: TPN672 is a promising new drug candidate for the treatment of schizophrenia and has been shown to be more effective in attenuating negative symptoms and cognitive deficits while having a lower risk of extrapyramidal symptoms and hyperprolactinemia. A phase I clinical trial is now under way to test its tolerance, pharmacokinetics, and pharmacodynamic effects in human volunteers. Accordingly, the present results will have significant impact on the development of new antischizophrenia drugs.


Assuntos
Antipsicóticos/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores de Serotonina/metabolismo , Esquizofrenia/metabolismo , Antagonistas da Serotonina/metabolismo , Agonistas do Receptor de Serotonina/metabolismo , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ratos , Ratos Sprague-Dawley , Esquizofrenia/tratamento farmacológico , Antagonistas da Serotonina/farmacologia , Antagonistas da Serotonina/uso terapêutico , Agonistas do Receptor de Serotonina/farmacologia , Agonistas do Receptor de Serotonina/uso terapêutico , Resultado do Tratamento
9.
Molecules ; 26(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808352

RESUMO

Aha1 is the only co-chaperone known to strongly stimulate the ATPase activity of Hsp90. Meanwhile, besides the well-studied co-chaperone function, human Aha1 has also been demonstrated to exhibit chaperoning activity against stress-denatured proteins. To provide structural insights for a better understanding of Aha1's co-chaperone and chaperone-like activities, nuclear magnetic resonance (NMR) techniques were used to reveal the unique structure and internal dynamics features of full-length human Aha1. We then found that, in solution, both the two domains of Aha1 presented distinctive thermal stabilities and dynamics behaviors defined by their primary sequences and three-dimensional structures. The low thermal stability (melting temperature of Aha128-162: 54.45 °C) and the internal dynamics featured with slow motions on the µs-ms time scale were detected for Aha1's N-terminal domain (Aha1N). The aforementioned experimental results suggest that Aha1N is in an energy-unfavorable state, which would therefore thermostatically favor the interaction of Aha1N with its partner proteins such as Hsp90's middle domain. Differently from Aha1N, Aha1C (Aha1's C-terminal domain) exhibited enhanced thermal stability (melting temperature of Aha1204-335: 72.41 °C) and the internal dynamics featured with intermediate motions on the ps-ns time scale. Aha1C's thermal and structural stabilities make it competent for the stabilization of the exposed hydrophobic groove of dimerized Hsp90's N-terminal domain. Of note, according to the NMR data and the thermal shift results, although the very N-terminal region (M1-W27) and the C-terminal relaxin-like factor (RLF) motif showed no tight contacts with the remaining parts of human Aha1, they were identified to play important roles in the recognition of intrinsically disordered pathological α-synuclein.


Assuntos
Modelos Moleculares , Chaperonas Moleculares , alfa-Sinucleína/metabolismo , Humanos , Cinética , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína
10.
Pharmacol Res ; 150: 104538, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31707034

RESUMO

The human A53T mutant of α-synuclein tends to aggregate and leads to neurotoxicity in familial Parkinson's disease (PD). The aggregation of α-synuclein is also found in sporadic PD. Thus, targeting α-synuclein clearance could be used as a drug-discovery strategy for PD treatment. Caffeic acid (CA) has shown neuroprotection in Alzheimer's disease or cerebral ischaemia; however, it is unclear whether CA confers neuroprotection in α-synuclein-induced PD models. Here we focus on whether and how A53T α-synuclein is affected by CA. We assessed the effect of CA on cell viability in SH-SY5Y cells overexpressing A53T α-synuclein. Pathway-related inhibitors were used to identify the autophagy mechanisms. Seven-month-old A53T α-synuclein transgenic mice (A53T Tg mice) received CA daily for eight consecutive weeks. Behaviour tests including the buried food pellet test, the pole test, the Rotarod test, open field analysis, and gait analysis were used to evaluate the neuroprotective effect of CA. Tyrosine hydroxylase and α-synuclein were assessed by immunohistochemistry or western blot in the substantia nigra (SN). We found that CA alleviated the cell damage induced by overexpressing A53T α-synuclein and that CA reduced A53T α-synuclein by activating the JNK/Bcl-2-mediated autophagy pathway. The efficacy of CA on A53T α-synuclein degradation was reversed by the autophagy inhibitor bafilomycin A1 and the JNK inhibitor SP600125. In A53T Tg mice, CA improved behavioural impairments, attenuated loss of dopaminergic neurons, enhanced autophagy and reduced α-synuclein in the SN. Thus, the results provide scientific evidence for the neuroprotective effect of CA in PD. Our work lays the foundation for CA clinical trials to treat PD in the future.


Assuntos
Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , MAP Quinase Quinase 4/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , alfa-Sinucleína/metabolismo , Animais , Autofagia/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Marcha/efeitos dos fármacos , Humanos , Masculino , Camundongos Transgênicos , Doença de Parkinson , Transtornos Parkinsonianos/metabolismo , alfa-Sinucleína/genética
11.
Stem Cells Dev ; 28(10): 649-658, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30887911

RESUMO

Epigenetic modifications play an important role in neural development. Trimethylated histone H3 at lysine 27 (H3K27me3) is a repressive epigenetic marker that mediates tissue development. In this study, we demonstrate that H3K27me3 and histone methyl transferase Ezh2 regulated the development of dopaminergic (DA) neurons in vitro and in vivo. We found that H3K27me3 increased during differentiation of ventral midbrain-derived neural stem cells (VM-NSCs). However, histone demethylase selective inhibitor GSK-J1 increased H3K27me3 level and decreased the expression of tyrosine hydroxylase. Treated with Ezh2-selective inhibitor EPZ005687 repressed the trimethylation of H3K27 and enhanced differentiation of DA neurons in VM-NSCs cultures. Furthermore, Ezh2 inhibition promoted the expression of DA neurons developmental-related factors by modifying H3K27 trimethylation on the relevant promoter regions. Moreover, the effect of Ezh2 inhibition-mediated DA neurons differentiation was blocked by the expression of shRNA specific for Nurr1. In vivo, Ezh2 decreased and resulted in a reduction of H3K27me3 in developing midbrain. Deletion of Ezh2 by RNA interference approach promoted differentiation of DA neurons during midbrain development. Overexpression of Ezh2 enhanced cell self-renewal and did not affect differentiation of DA neurons.


Assuntos
Neurônios Dopaminérgicos/citologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histonas/metabolismo , Mesencéfalo/metabolismo , Animais , Diferenciação Celular/genética , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Epigênese Genética/genética , Inibidores de Histona Desacetilases/farmacologia , Indazóis/farmacologia , Lisina/metabolismo , Metilação , Células-Tronco Neurais/citologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Regiões Promotoras Genéticas/genética , Piridonas/farmacologia , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Sci Rep ; 8(1): 14040, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232349

RESUMO

Oligodendrocytes are a type of glial cells that ensheath multiple neuronal axons and form myelin. Under pathological conditions, such as multiple sclerosis (MS), inflammatory damage to myelin and oligodendrocytes leads to demyelination. Although the demyelinated regions can partially resolve functional deficits through remyelination, however, as the disease progresses, remyelination typically becomes incomplete and ultimately fails. One possible explanation for this failure is the activation of the Notch pathway in MS lesions, which impedes oligodendrocyte precursor cells (OPCs) at maturation. This leads to a potential target for remyelination. Here, we have identified a compound Yhhu4952 that promoted the maturation of cultured OPCs in a dose-dependent and time-dependent manner. Neonatal rats showed a significant increase in the expression of myelin basic protein (MBP) and the prevalence of mature oligodendrocytes in the corpus callosum after Yhhu4952 treatment. The compound was also effective in promoting remyelination in cuprizone-induced demyelination model and improving severity scores in experimental autoimmune encephalomyelitis (EAE) model. Mechanism studies revealed that Yhhu4952 promotes OPC differentiation through the inhibition of the Jagged1-Notch1 pathway. These findings suggest Yhhu4952 is potentially useful for proceeding oligodendrocyte differentiation and remyelination.


Assuntos
Cuprizona/efeitos adversos , Doenças Desmielinizantes/tratamento farmacológico , Proteína Básica da Mielina/metabolismo , Oligodendroglia/citologia , Quinazolinas/administração & dosagem , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Bainha de Mielina/metabolismo , Oligodendroglia/efeitos dos fármacos , Quinazolinas/química , Quinazolinas/farmacologia , Ratos , Remielinização/efeitos dos fármacos , Transdução de Sinais , Fatores de Tempo
13.
Stem Cells ; 36(8): 1273-1285, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29726088

RESUMO

The adult neurogenesis occurs throughout the life of the mammalian hippocampus and is found to be essential for learning and memory. Identifying new ways to manipulate the number of neural stem cells (NSCs) and enhance endogenous neurogenesis in adults is very important. Here we found that a novel compound, N2-(4-isopropylphenyl)-5-(3-methoxyphenoxy)quinazoline-2,4-diamine (code-named Yhhu-3792), enhanced the self-renewal capability of NSCs in vitro and in vivo. In vitro, Yhhu-3792 increased the ratio of 5-Bromo-2-deoxyuridine+ /4'-6-diamidino-2-phenylindole+ embryonic NSCs and accelerated the growth of neurospheres significantly. We demonstrated that Yhhu-3792 activated Notch signaling pathway and promoted the expression of Notch target genes, Hes3 and Hes5. And the Notch signaling inhibitor DAPT could inhibit its function. Thus, we concluded Yhhu-3792 increased the number of embryonic NSCs via activating the Notch signaling pathway. We measured the effect of Yhhu-3792 on epidermal growth factor receptor signaling, which demonstrated Yhhu-3792 act via a different mechanism with the quinazoline parent chemical group. In the eight-week-old male C57BL/6 mice, chronic Yhhu-3792 administration expanded the NSCs pool and promoted endogenous neurogenesis in the hippocampal dentate gyrus (DG). It also increased the spatial and episodic memory abilities of mice, when evaluated with the Morris water maze and Fear conditioning tests. In conclusion, Yhhu-3792 could be a novel drug candidate to promote the self-renew of NSCs and adult neurogenesis. And it may have therapeutic potential in the impairment of learning and memory associated DG dysfunction. Stem Cells 2018;36:1273-1285.


Assuntos
Cognição/fisiologia , Hipocampo/fisiologia , Células-Tronco Neurais/citologia , Neurogênese/efeitos dos fármacos , Quinazolinas/farmacologia , Animais , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Cognição/efeitos dos fármacos , Condicionamento Psicológico , Dipeptídeos/farmacologia , Embrião de Mamíferos/citologia , Medo , Reação de Congelamento Cataléptica/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Quinazolinas/química , Tempo de Reação/efeitos dos fármacos , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
J Ethnopharmacol ; 219: 23-30, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29545208

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cananga odorata essential oil, known as ylang-ylang essential oil (YYO), was commonly used in the aromatherapy for relaxation and mood adjusting use. In our previous study, YYO played anxiolytic effects on the mice in several behavioral tests that based on the instinctive responses to novel environments. AIM OF THE STUDY: To investigate the effects and mechanisms of YYO reversing the anxiety induced by 5-HT2C receptor agonist 1-(3-chlorophenyl) piperazine (m-CPP). MATERIALS AND METHODS: m-CPP was administrated to the male ICR mice to develop an anxiety model. The anxiolytic effect of YYO (0.1%, 1% and 10%, v/v) was evaluated in the elevated plus maze (EPM) test after odor exposure. Western blot was used to detect the phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2) and cAMP response element-binding protein (CREB) and the expression of c-Fos in the prefrontal cortex (PFC) and hippocampus after the EPM test. Serotonin and its metabolite change in the brain were detected by liquid chromatogram with an electrochemical detector. The effect of YYO on the plasma corticosterone level was evaluated using enzyme-linked immunosorbent assay (ELISA) after the odor exposure. RESULTS: The behavior analysis showed that m-CPP (2 mg/kg and 4 mg/kg) could induce anxiety behaviors in the mice while diazepam (2 mg/kg) reversed the anxiety behavior induced by m-CPP. YYO dose-dependently increased the time and number of entries in the open arms (p < 0.05) compared to the Tween 80 group. YYO reduced the phosphorylation levels of ERK1/2 (p < 0.05) in both PFC and hippocampus. Down-regulations of phosphor-CREB (p < 0.05) and c-Fos (p < 0.05) were only observed in the hippocampus. YYO also affected the brain serotonin metabolism and reduced the blood plasma corticosterone level of the m-CPP treated mice. CONCLUSION: YYO odor exposure could reverse the anxiety behaviors generated by m-CPP. The anxiolytic effect of YYO was associated with the ERK1/2/CREB pathway in the hippocampus and relevant to the serotonin system.


Assuntos
Ansiolíticos/administração & dosagem , Ansiedade/tratamento farmacológico , Cananga , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Piperazinas/toxicidade , Agonistas do Receptor de Serotonina/toxicidade , Administração por Inalação , Animais , Ansiolíticos/isolamento & purificação , Ansiedade/induzido quimicamente , Ansiedade/metabolismo , Relação Dose-Resposta a Droga , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Óleos de Plantas/administração & dosagem , Óleos de Plantas/isolamento & purificação , Serotonina/metabolismo
15.
Mol Neurobiol ; 54(9): 6970-6983, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27785754

RESUMO

Histone deacetylase 4 (HDAC4) is a class II HDAC which is highly expressed in the brain. Previous reports have shown that HDAC4 is essential for normal brain physiology and its deregulation leads to several neurodegenerative disorders. However, it remains unclear whether dysregulation of HDAC4 is specifically involved in the development of Parkinson's disease. In this study, we demonstrate that intracellular trafficking of HDAC4 is important in regulating dopaminergic cell death. While HDAC4 normally localizes to the cytoplasm, nuclear accumulation of HDAC4 was observed in dopaminergic neurons overexpressing A53T mutant α-synuclein treated with MPP+/MPTP in vitro and in vivo. Nuclear-localized HDAC4 repressed cAMP response element-binding protein (CREB) and myocyte enhancer factor 2A (MEF2A), altered neuronal gene expression, and promoted neuronal apoptosis. Furthermore, cytoplasm-to-nucleus shuttling of HDAC4 was determined by its phosphorylation status, which was regulated by PP2A and PKCε. Treatment with PKCε-specific activators, DCP-LA or Bryostatin 1, provided neuroprotection against MPP+ toxicity in a dose-dependent manner. In summary, our research illustrated that intracellular trafficking of HDAC4 contributes to the vulnerability of cells expressing pathogenic α-synuclein mutants in response to oxidative stress and compounds which maintain cytoplasmic localization of HDAC4 such as PKCε activators that may serve as therapeutic agents for Parkinson's disease.


Assuntos
Núcleo Celular/enzimologia , Histona Desacetilases/metabolismo , Neurotoxinas/metabolismo , Doença de Parkinson/enzimologia , Doença de Parkinson/patologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Núcleo Celular/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fatores de Transcrição MEF2/metabolismo , Masculino , Camundongos Transgênicos , Mutação/genética , Células PC12 , Fosforilação/efeitos dos fármacos , Proteína Quinase C-épsilon/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos , Transcrição Gênica/efeitos dos fármacos , alfa-Sinucleína/genética
16.
Front Mol Neurosci ; 9: 131, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965534

RESUMO

Brain ischemic preconditioning (PC) provides vital insights into the endogenous protection against stroke. Genomic and epigenetic responses to PC condition the brain into a state of ischemic tolerance. Notably, PC induces the elevation of histone acetylation, consistent with evidence that histone deacetylase (HDAC) inhibitors protect the brain from ischemic injury. However, less is known about the specific roles of HDACs in this process. HDAC3 has been implicated in several neurodegenerative conditions. Deletion of HDAC3 confers protection against neurotoxicity and neuronal injury. Here, we hypothesized that inhibition of HDAC3 may contribute to the neuronal survival elicited by PC. To address this notion, PC and transient middle cerebral artery occlusion (MCAO) were conducted in Sprague-Dawley rats. Additionally, primary cultured cortical neurons were used to identify the modulators and effectors of HDAC3 involved in PC. We found that nuclear localization of HDAC3 was significantly reduced following PC in vivo and in vitro. Treatment with the HDAC3-specific inhibitor, RGFP966, mimicked the neuroprotective effects of PC 24 h and 7 days after MCAO, causing a reduced infarct volume and less Fluoro-Jade C staining. Improved functional outcomes were observed in the neurological score and rotarod test. We further showed that attenuated recruitment of HDAC3 to promoter regions following PC potentiates transcriptional initiation of genes including Hspa1a, Bcl2l1, and Prdx2, which may underlie the mechanism of protection. In addition, PC-activated calpains were implicated in the cleavage of HDAC3. Pretreatment with calpeptin blockaded the attenuated nuclear distribution of HDAC3 and the protective effect of PC in vivo. Collectively, these results demonstrate that the inhibition of HDAC3 preconditions the brain against ischemic insults, indicating a new approach to evoke endogenous protection against stroke.

17.
Phytomedicine ; 23(14): 1727-1734, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27912874

RESUMO

BACKGROUND: Essential oil from Cananga odorata (ylang-ylang essential oil, YYO) is usually used in reducing blood pressure, improving cognitive functioning in aromatherapy in human. Few reports showed its effect on anxiety behaviors. HYPOTHESIS/PURPOSE: To investigate the anxiolytic effects of YYO exposure on anxiety animal models, determine the major active constituents and investigate the change of neurotransmitters after odor exposure. STUDY DESIGN AND METHODS: ICR mice were subjected to three anxiety models including open field, elevated plus maze and light-dark box tests after acute and chronic YYO exposure. Main constituents of YYO were defined using GC/MS. These compounds were then tested on the male mice separately on three anxiety models. The monoamines neurotransmitters and their metabolites were analyzed after acute odor exposure and elevated plus maze test. RESULTS: YYO exposure only showed significant anxiolytic effect on the male mice. It increased the time that mice visited open arms and light box area in elevated plus maze and light-dark box tests after acute and chronic YYO exposures. Three main constituents of YYO, benzyl benzoate, linalool and benzyl alcohol showed anxiolytic effect on the male mice individually. YYO exposure brought changes of neurotransmitters on the male mice more significantly than the female mice. It decreased the dopamine (DA) concentration in the striatum and increased the 5-hydroxytryptamine (5-HT) concentration in the hippocampus of the male mice. The major constituent benzyl benzoate changed neurotransmitters concentration in accordance with the YYO. Moreover, it decreased the ratio of 5-HIAA/5-HT in the hippocampus. CONCLUSION: Both acute and chronic YYO exposure showed anxiolytic effect on the male mice. YYO and its major constituent benzyl benzoate might act on the 5-HTnergic and DAnergic pathways.


Assuntos
Ansiolíticos/farmacologia , Ansiedade/metabolismo , Cananga/química , Dopamina/metabolismo , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Serotonina/metabolismo , Monoterpenos Acíclicos , Animais , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Aromaterapia , Comportamento Animal/efeitos dos fármacos , Benzoatos/farmacologia , Benzoatos/uso terapêutico , Álcool Benzílico/farmacologia , Álcool Benzílico/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Humanos , Ácido Hidroxi-Indolacético/metabolismo , Masculino , Camundongos Endogâmicos ICR , Monoterpenos/farmacologia , Monoterpenos/uso terapêutico , Óleos Voláteis/química , Óleos Voláteis/uso terapêutico , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico
18.
Exp Neurol ; 285(Pt A): 61-71, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27637804

RESUMO

Daily stress is associated with increased risk for various diseases, and numerous studies have provided evidence that environmental stress leads to deleterious effects on the central nervous system. However, it remains unclear whether chronic stress exacerbates the progression of Parkinson's disease (PD). To investigate this hypothesis, we determined the effect of chronic mild stress (CMS) on the pathogenesis of PD in a transgenic mice line that overexpresses the human A53T mutant α-synuclein (A53T Tg mice). We show that when exposed to CMS, male, but not female, A53T Tg mice developed profound motor disabilities and exhibited olfactory sensitivity deficits. Pathological analysis also identified robust dopaminergic neuron degeneration and strong reduction of dopamine levels in A53T Tg male mice who underwent CMS treatment. Systematic examination of the abnormal aggregation of α-synuclein revealed a profound increase of inclusion in A53T Tg male mice subject to CMS resembling key pathological changes of PD. An insight into the mechanism underlying stress leading to the acceleration of neurodegeneration in those with genetic susceptibility, was revealed by evidence of microglia activation and elevated pro-inflammatory factor levels in A53T Tg male mice following CMS. Notably, these effects of CMS on the pathogenesis of PD showed a remarkable sexual dimorphism: only male A53T Tg mice exhibited exacerbation of the progression of PD. However, the molecular and cellular bases for this difference remains to be elucidated. Our results indicate a causative role for chronic mild stress using a PD animal model. Based on these findings, we propose that CMS acts as an environmental risk factor that leads to neuroinflammation and progressive neurodegeneration on a background of PD susceptibility.


Assuntos
Predisposição Genética para Doença , Mutação/genética , Doença de Parkinson/etiologia , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , alfa-Sinucleína/genética , Animais , Peso Corporal/genética , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Corpo Estriado/patologia , Corticosterona/sangue , Citocinas/metabolismo , Progressão da Doença , Comportamento Exploratório/fisiologia , Feminino , Preferências Alimentares , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Neurotransmissores/metabolismo , Transtornos do Olfato/etiologia , Transtornos do Olfato/genética , Doença de Parkinson/genética , Estresse Psicológico/sangue , Substância Negra/patologia , Fatores de Tempo , Ubiquitina/metabolismo , Caminhada
19.
Brain Res ; 1649(Pt A): 123-131, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27524398

RESUMO

Over-activated microglia during stroke has been documented to aggravate brain damage. Our previous studies showed that senkyunolide I (SEI) exerted anti-inflammatory effects against endotoxin insult in vitro and ameliorative effects on cerebral ischemia/reperfusion (I/R) injury in vivo. Using oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic stroke, we here investigated the anti-inflammatory effect of SEI on microglial cells and explored the underlying mechanisms. OGD for 3h followed by reoxygenation for 12h significantly enhanced the release of pro-inflammatory cytokines and expressions of inflammation-related enzymes in BV-2 cells, which was inhibited by pretreatment with SEI. To elucidate the mechanisms, we studied its effect on upstream signaling pathways. It was found that SEI suppressed the activation of NF-κB pathway induced by OGD/R and the MAPK pathway was shown not to be involved. Furthermore, SEI significantly down-regulated TLR4/MyD88 pathway with specifically improving inducible Hsp70 level through increasing HSF-1/DNA binding activity, and these regulations responsive to SEI were attenuated by transfecting Hsp70 siRNA and HSF-1 decoy ODNs. Additionally, SEI exerted similar influence on Hsp70/TLR4/NF-κB pathway in rat primary microglial cells. The results suggested that SEI had a potent effect against stroke-induced neuroinflammation through suppressing the TLR4/NF-κB pathway by up-regulating Hsp70 dependent on HSF-1.

20.
Br J Pharmacol ; 173(18): 2793-807, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27429358

RESUMO

BACKGROUND AND PURPOSE: Fingolimod (FTY-720) is the first oral therapeutic drug approved for the relapsing-remitting forms of multiple sclerosis. Neural stem cells (NSCs) are capable of continuous self-renewal and differentiation. The dentate gyrus of the hippocampus in the adult mammalian brain contains a population of NSCs and is one of the regions where neurogenesis takes place. FTY-720 has been shown to have neuroprotective effects in several model systems, so we investigated the direct effects of FTY-720 on NSCs and adult neurogenesis. EXPERIMENTAL APPROACHES: We assessed the effects of FTY-720 on the proliferation and differentiation of cultured embryonic hippocampal NSCs using the 5-bromo-2-deoxyuridine incorporation assay, the neurosphere formation assay and western blot analysis. Receptor selective agonists and antagonists were used to identify the mechanisms involved. Neurogenesis in the hippocampus of C57BL/6 mice was also assessed by immunohistochemistry. The Morris water maze and fear conditioning tests were used to detect the learning and memory abilities of mice. KEY RESULTS: FTY-720 promoted the proliferation of embryonic hippocampal NSCs probably via the activation of ERK signalling, Gi/o proteins and S1P1 receptors. However, FTY-720 did not affect the differentiation of cultured hippocampal NSCs. In vivo, chronic treatment with FTY-720 promoted hippocampal neurogenesis in adult C57BL/6 mice and enhanced their learning and memory abilities. CONCLUSIONS AND IMPLICATIONS: Our results suggest a new target for the activation of NSCs and provide an insight into the therapeutic effects of FTY-720 in neuropsychiatric disorders, neurodegenerative diseases and age-related cognitive decline where hippocampal neurogenesis is compromised.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Cloridrato de Fingolimode/farmacologia , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/citologia , Cloridrato de Fingolimode/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...