Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 80(9): 291, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464097

RESUMO

Phosphate-solubilizing bacteria (PSB) are microorganisms that can dissolve insoluble phosphorus (P) to accessible forms. This study aimed to screen saline-alkali-tolerant PSB and analyze its growth promoting properties, and evaluate its effects on the growth, quality, soil nutrient balance, and enzyme activities of silage maize in the field. We isolated six phosphate-solubilizing strains from rhizosphere soil of silage maize planted in saline-alkali land, and FC-1 with the best P-solubilizing effect was used for further study. The morphological, physiological and biochemical analysis, and 16S rDNA and housekeeping gene atpD sequencing were performed for identification. FC-1 was identified as Pantoea dispersa and had high P solubility. The phosphate solubility of FC-1 using four P sources ranged from 160.79 to 270.22 mg l-1. FC-1 produced indole-3-acetic acid (IAA) and decreased the pH of the growth media by secreting organic acids, including citric acid, malic acid, succinic acid, and acetic acid. The results of a field experiment indicated that FC-1 treatment increased the height, stem diameter, fresh weight, dry weight, starch content, crude protein content, and total P content of silage maize by 9.8, 9.2, 12.6, 11.7, 12.6, 18.3, and 17.4%, respectively. The nitrogen, potassium, phosphorus, and organic matter contents in the rhizosphere soil of silage maize increased by 29.8, 17.1, 17.9, and 25.3%, respectively; urease, catalase, sucrase, and alkaline phosphatase levels also increased by 24.7, 26.7, 24.0, and 19.5%, respectively. FC-1 promoted the growth of silage maize by improving nutrient metabolism and enzyme activities in saline-alkali soil and may be an effective alternative to fertilizers.


Assuntos
Pantoea , Fosfatos , Fosfatos/metabolismo , Zea mays/microbiologia , Álcalis/metabolismo , Silagem , Solo/química , Fósforo/metabolismo , Microbiologia do Solo
2.
Langmuir ; 38(10): 3305-3315, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245063

RESUMO

Photocatalytic degradation of wastewater and the simultaneous production of hydrogen (H2) is a green and efficient method to solve energy and environmental problems. In this paper, coal-based SiO2/GO with a stable structure was prepared by a modified Hummers oxidation method, and then, a lotus-shaped composite photocatalyst, MoS2/SiO2/GO, was prepared by in situ loading of flower cluster MoS2 from sodium molybdate reduction onto SiO2/GO. Its photocatalytic degradation of wastewater and H2 production properties were investigated while characterizing the material structure. The results show that SiO2/GO as a carrier not only ensures adequate dispersion of MoS2 but also enhances the visible-light response of the composite catalyst. In addition, it can also hinder the recombination of photogenerated electrons and holes in MoS2 and act as an electron transport channel in composite catalysts. MoS2/SiO2/GO exhibits much higher photocatalytic degradation of wastewater and H2 production capacity than MoS2: after 180 min of reaction, the CODcr removal of wastewater increased from 45.6% for MoS2 to 84.2% for MoS2/SiO2/GO and the H2 yield reached 233.4 µmol. The goal of degrading wastewater while producing H2 more economically has been tentatively achieved, although not to the extent required for industrialization.

3.
J Neuroinflammation ; 18(1): 146, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183019

RESUMO

BACKGROUND: Thymosin ß4 (Tß4) is the most abundant member of the ß-thymosins and plays an important role in the control of actin polymerization in eukaryotic cells. While its effects in multiple organs and diseases are being widely investigated, the safety profile has been established in animals and humans, currently, little is known about its influence on Alzheimer's disease (AD) and the possible mechanisms. Thus, we aimed to evaluate the effects and mechanisms of Tß4 on glial polarization and cognitive performance in APP/PS1 transgenic mice. METHODS: Behavior tests were conducted to assess the learning and memory, anxiety and depression in APP/PS1 mice. Thioflavin S staining, Nissl staining, immunohistochemistry/immunofluorescence, ELISA, qRT-PCR, and immunoblotting were performed to explore Aß accumulation, phenotypic polarization of glial cells, neuronal loss and function, and TLR4/NF-κB axis in APP/PS1 mice. RESULTS: We demonstrated that Tß4 protein level elevated in all APP/PS1 mice. Over-expression of Tß4 alone alleviated AD-like phenotypes of APP/PS1 mice, showed less brain Aß accumulation and more Insulin-degrading enzyme (IDE), reversed phenotypic polarization of microglia and astrocyte to a healthy state, improved neuronal function and cognitive behavior performance, and accidentally displayed antidepressant-like effect. Besides, Tß4 could downregulate both TLR4/MyD88/NF-κB p65 and p52-dependent inflammatory pathways in the APP/PS1 mice. While combination drug of TLR4 antagonist TAK242 or NF-κB p65 inhibitor PDTC exerted no further effects. CONCLUSIONS: These results suggest that Tß4 may exert its function by regulating both classical and non-canonical NF-κB signaling and is restoring its function as a potential therapeutic target against AD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/metabolismo , NF-kappa B/metabolismo , Neuroglia/metabolismo , Timosina/genética , Timosina/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Memória , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Neurônios/metabolismo , Fenótipo , Presenilina-1/genética , Transdução de Sinais
4.
Bull Environ Contam Toxicol ; 107(2): 269-275, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32100060

RESUMO

Biochar has limited capacity to adsorb oxytetracycline (OTC). Here we have used bamboo willow biochar (BC) as a carrier to produce nMnO2-loaded biochars (MBC) by a co-precipitation method. Their chemical compositions, morphological features, specific surface area, and surface functional groups were observed or determined. Batch experiments were conducted to assess the effects of reaction time, initial OTC concentrations, pH, salt concentrations, and natural organic matter (NOM) on OTC removal. Kinetics and isotherms indicated that OTC was mainly adsorbed via chemical interactions, and mono- and multi-layer adsorption occurred on the surface. MBC removed 19-25 times more OTC than BC, and the removal was highest at near-neutral pH, not influenced by NaCl (2, 10 mM), slighted reduced by NOM (0-20 mg L-1), and enhanced by NaHCO3 (2, 10 mM). Besides being an adsorbent, MBC acted as an oxidant and degraded 58.5% of OTC at 24 h.


Assuntos
Oxitetraciclina , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Oxidantes , Poluentes Químicos da Água/análise
5.
Bull Environ Contam Toxicol ; 105(2): 277-282, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32556688

RESUMO

A bulky waste, oyster shell (OS), was calcinated at 400-800°C to produce Ca-rich products (OS400-OS800) to reduce the human health risk of soil cadmium (Cd) and arsenic (As). Thermogravimetric analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and BET method were used to characterize OS and its calcined products. OS and OS400-OS700 removed little Cd and As from water, whereas OS800 removed 1508 mg Cd or 514 mg As per kg of OS800 from solutions of 1032 mg Cd/L or 257 mg As/L via adsorption and precipitation. Adding OS800 at a 2% dose to a Cd- and As-contaminated soil lowered its exchangeable Cd from 60% to 27%, and reduced Cd content in the edible part of vegetable Bok Choy from 2.80 to 0.048 mg/kg and As from 1.73 to 0.47 mg/kg. Converting OS to soil amendment has the dual benefits to soil remediation and sustainable oyster aquaculture.


Assuntos
Exoesqueleto , Cádmio/química , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/química , Adsorção , Agricultura , Animais , Arsênio/análise , Cádmio/análise , Carbonato de Cálcio , Humanos , Ostreidae , Solo , Poluentes do Solo/análise , Verduras
6.
Environ Geochem Health ; 42(6): 1569-1578, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31701392

RESUMO

Biochar has been intensively investigated for carbon sequestration, soil fertility enhancement, and immobilization of heavy metals and organic pollutants. Large-scale use of biochar in agricultural production and environmental remediation, however, has been constrained by its high cost. Here, we demonstrated the production of low-cost biochar ($20/ton) in the field from Robinia pseudoacacia biowaste via a combined aerobic and oxygen-limited carbonization process and a fire-water-coupled method. It involved aerobic combustion at the outer side of biomass, oxygen-limited pyrolysis in the inner core of biomass, and the termination of the carbonization by water spray. The properties of biochar thus produced were greatly affected by exposure time (the gap between a burning char fell to the ground and being extinguished by water spray). Biochar formed by zero exposure time showed a larger specific surface area (155.77 m2/g), a higher carbon content (67.45%), a lower ash content (15.38%), and a higher content of carboxyl and phenolic-hydroxyl groups (1.74 and 0.86 mol/kg, respectively) than biochars formed with longer exposure times (5-30 min). Fourier-transform infrared spectroscopic (FTIR) spectra indicated that oxygen-containing functional groups of biochar played a role in Cd and oxytetracycline sorption though a quantitative relationship could not be established as the relative contribution of carbon and ash moieties of biochar to the sorption was unknown. Outcomes from this research provide an option for inexpensive production of biochar to support its use as a soil amendment in developing countries.


Assuntos
Cádmio/química , Carvão Vegetal/química , Poluentes Ambientais/química , Oxitetraciclina/química , Adsorção , Biomassa , Cádmio/isolamento & purificação , Poluentes Ambientais/isolamento & purificação , Oxigênio/química , Oxitetraciclina/isolamento & purificação , Robinia/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo
7.
Artigo em Inglês | MEDLINE | ID: mdl-31818024

RESUMO

With abundant oxygen-containing functional groups, a humic substance (HS) has a high potential to remediate soils contaminated by heavy metals. Here, HS was first extracted from a leonardite and analyzed for its chemical compositions and spectroscopic characteristics. Then it was assessed for its ability as a washing agent to remove Cd and As from three types of soils (red soil, black soil, and fluvo-aquic soil) that were spiked with those contaminants (Cd: 40.5-49.1 mg/kg; As: 451-584 mg/kg). The operational washing conditions, including the pH and concentration of the HS, washing time and cycles, and liquid-soil ratio, were assessed for Cd and As removal efficiency. At pH 7, with an HS concentration (3672 mg C/L) higher than its critical micelle concentration and a liquid-soil ratio of 30, a single washing for 6-12 h removed 41.9 mg Cd/kg and 199.3 mg As/kg from red soil, 33.5 mg Cd/kg and 291.5 mg As/kg from black soil, and 30.4 mg Cd/kg and 325.5 mg As/kg from fluvo-aquic soil. The removal of Cd and As from the contaminated soils involved the complexation of Cd and As with the carboxyl and phenolic groups of HS. Outcomes from this research could be used to develop a tailor-made HS washing agent for the remediation of Cd- and As-contaminated soils with different properties.


Assuntos
Arsênio/química , Cádmio/química , Recuperação e Remediação Ambiental/métodos , Substâncias Húmicas , Minerais/química , Poluentes do Solo/química , Solo/química , Adulto , China , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...