Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 1031833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338126

RESUMO

In recent years, a huge number of individuals all over the world, elderly people, in particular, have been suffering from Alzheimer's disease (AD), which has had a significant negative impact on their quality of life. To intervene early in the progression of the disease, accurate, convenient, and low-cost detection technologies are gaining increased attention. As a result of their multiple merits in the detection and assessment of AD, biosensors are being frequently utilized in this field. Behavioral detection is a prospective way to diagnose AD at an early stage, which is a more objective and quantitative approach than conventional neuropsychological scales. Furthermore, it provides a safer and more comfortable environment than those invasive methods (such as blood and cerebrospinal fluid tests) and is more economical than neuroimaging tests. Behavior detection is gaining increasing attention in AD diagnosis. In this review, cutting-edge biosensor-based devices for AD diagnosis together with their measurement parameters and diagnostic effectiveness have been discussed in four application subtopics: body movement behavior detection, eye movement behavior detection, speech behavior detection, and multi-behavior detection. Finally, the characteristics of behavior detection sensors in various application scenarios are summarized and the prospects of their application in AD diagnostics are presented as well.

2.
Front Bioeng Biotechnol ; 9: 774210, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957071

RESUMO

Diabetes and its complications have become a worldwide concern that influences human health negatively and even leads to death. The real-time and convenient glucose detection in biofluids is urgently needed. Traditional glucose testing is detecting glucose in blood and is invasive, which cannot be continuous and results in discomfort for the users. Consequently, wearable glucose sensors toward continuous point-of-care glucose testing in biofluids have attracted great attention, and the trend of glucose testing is from invasive to non-invasive. In this review, the wearable point-of-care glucose sensors for the detection of different biofluids including blood, sweat, saliva, tears, and interstitial fluid are discussed, and the future trend of development is prospected.

3.
ACS Biomater Sci Eng ; 3(6): 1000-1007, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33429571

RESUMO

Fibroblast growth factor 2 (FGF-2), an important paracrine growth factor, binds electrostatically with low micromolar affinity to heparan sulfates present on extracellular matrix proteins. A single molecular analysis served as a basis to decipher the nanomechanical mechanism of the interaction between FGF-2 and the heparan sulfate surrogate, heparin, with a modular atomic force microscope (AFM) design combining magnetic actuators with force measurements at the low force regime (1 × 101 to 1 × 104 pN/s). Unbinding events between FGF-2-heparin complexes were specific and short-lived. Binding between FGF-2 and heparin had strong slip bond characteristics as demonstrated by a decrease of lifetime with tensile force on the complex. Unbinding forces between FGF-2 and heparin were further detailed at different pH as relevant for (patho-) physiological conditions. An acidic pH environment (5.5) modulated FGF-2-heparin binding as demonstrated by enhanced rupture forces needed to release FGF-2 from the heparin-FGF-2 complex as compared to physiological conditions. This study provides a mechanistic and hypothesis driven model on how molecular forces may impact FGF-2 release and storage during tissue remodeling and repair.

4.
Sci Rep ; 6: 27567, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27273214

RESUMO

We report a modular atomic force microscope (AFM) design for biomolecular experiments. The AFM head uses readily available components and incorporates deflection-based optics and a piezotube-based cantilever actuator. Jetted-polymers have been used in the mechanical assembly, which allows rapid manufacturing. In addition, a FeCo-tipped electromagnet provides high-force cantilever actuation with vertical magnetic fields up to 0.55 T. Magnetic field calibration has been performed with a micro-hall sensor, which corresponds well with results from finite element magnetostatics simulations. An integrated force resolution of 1.82 and 2.98 pN, in air and in DI water, respectively was achieved in 1 kHz bandwidth with commercially available cantilevers made of Silicon Nitride. The controller and user interface are implemented on modular hardware to ensure scalability. The AFM can be operated in different modes, such as molecular pulling or force-clamp, by actuating the cantilever with the available actuators. The electromagnetic and piezoelectric actuation capabilities have been demonstrated in unbinding experiments of the biotin-streptavidin complex.


Assuntos
Proteínas de Bactérias/ultraestrutura , Biotina/análogos & derivados , Desenho de Equipamento , Microscopia de Força Atômica/instrumentação , Campos Eletromagnéticos , Imãs , Microscopia de Força Atômica/métodos
5.
Nanoscale Horiz ; 1(6): 488-495, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-32260713

RESUMO

We report a novel atomic force microscopy (AFM) technique with dual actuation capabilities using both piezo and magnetic bead actuation for advanced single-molecule force spectroscopy experiments. The experiments are performed by manipulating magnetic microbeads using an electromagnet against a stationary cantilever. Magnetic actuation has been demonstrated before to actuate cantilevers, but here we keep the cantilever stationary and accomplish actuation via free-manipulated microstructures. The developed method benefits from significant reduction of drift, since the experiments are performed without a substrate contact and the measured force is inherently differential. In addition, shrinking the size of the actuator can minimize hydrodynamic forces affecting the cantilever. The new method reported herein allows for the application of constant force to perform force-clamp experiments without any active feedback, profiled for a deeper understanding of biomolecular interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...