Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 161(2)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-38984962

RESUMO

Two-dimensional (2D)/three-dimensional (3D) halide perovskite heterostructures have been extensively studied for their ability to combine the outstanding long-term stability of 2D perovskites with the superb optoelectronic properties of 3D perovskites. While current studies mostly focus on vertically stacked 2D/3D perovskite heterostructures, a theoretical understanding regarding the optoelectronic properties of 2D/3D perovskite lateral heterostructures is still lacking. Herein, we construct a series of 2D/3D perovskite lateral heterostructures to study their optoelectronic properties and interfacial charge transfer using density functional theory (DFT) calculations. We find that the band alignments of 2D/3D heterostructures can be regulated by varying the quantum-well thickness of 2D perovskites. Moreover, decreasing the 2D component ratio in 2D/3D heterostructures can be favorable to form type-I band alignment, whereas a large component ratio of 2D perovskites tends to form type-II band alignment. We can improve the amount of charge transfer at the 2D/3D perovskite interfaces and the light absorption of 2D perovskites by increasing quantum-well thickness. These present findings can provide a clear designing principle for achieving 3D/2D perovskite lateral heterostructures with tunable optoelectronic properties.

2.
Mater Horiz ; 9(12): 3002-3012, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36129243

RESUMO

Improving the tolerance of flexible polymers to extreme temperatures and electrical fields is critical to the development of advanced electrical and electronic systems. Suppressing carrier movement at high temperatures is one of the key methods to improve the high-temperature charging and discharging efficiency. In this work, a molecular semiconductor (ITIC) with high electron affinity energy is blended into the promising polymer polyetherimide (PEI). This molecular semiconductor will introduce traps in the dielectric that can trap carriers, thus achieving the effect of inhibiting carrier movement. Changing the concentration and position of the molecular semiconductor by electrospinning technology also means changing the density of the trap and the position of the trap layer. The effects of trap density and trap layer location on the high-temperature breakdown strength and energy storage properties of composite dielectrics are studied successively, and the structure of a composite with optimal high temperature energy storage properties is obtained. That is, the dielectric S-15-28 has an energy storage density (U) of 6.37 J cm-3 at a temperature of 150 °C with a charge-discharge efficiency (η) of 90%; it also has a U of 4.3 J cm-3 at a temperature of 180 °C with the η of 90%. A mechanism based on Mott and Gurney's law is proposed to explain the effect of trap parameters on leakage current. This work provides a new structural design idea to regulate the dielectric properties of all-organic dielectrics through trap distribution parameter optimization.

3.
Adv Sci (Weinh) ; 8(23): e2102221, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34519436

RESUMO

An electrostatic capacitor has been widely used in many fields (such as high pulsed power technology, new energy vehicles, etc.) due to its ultrahigh discharge power density. Remarkable progress has been made over the past 10 years by doping ferroelectric ceramics into polymers because the dielectric constant is positively correlated with the energy storage density. However, this method often leads to an increase in dielectric loss and a decrease in energy storage efficiency. Therefore, the way of using a multilayer structure to improve the energy storage density of the dielectric has attracted the attention of researchers. Although research on energy storage properties using multilayer dielectric is just beginning, it shows the excellent effect and huge potential. In this review, the main physical mechanisms of polarization, breakdown and energy storage in multilayer structure dielectric are introduced, the theoretical simulation and experimental results are systematically summarized, and the preparation methods and design ideas of multilayer structure dielectrics are mainly described. This article covers not only an overview of the state-of-the-art advances of multilayer structure energy storage dielectric but also the prospects that may open another window to tune the electrical performance of the electrostatic capacitor via designing a multilayer structure.

4.
Polymers (Basel) ; 12(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32877993

RESUMO

Improving the energy storage density of dielectrics without sacrificing charge-discharge energy storage efficiency and reliability is crucial to the performance improvement of modern electrical and electronic systems, but traditional methods of doping high-dielectric ceramics cannot achieve high energy storage densities without sacrificing reliability and storage efficiency. Here, an all-organic energy storage dielectric composed of ferroelectric and linear polymer with a sandwich structure is proposed and successfully prepared by the electrostatic spinning method. Additionally, the effect of the ferroelectric/linear volume ratio on the dielectric properties, breakdown, and energy storage is systematically studied. The results show that the structure has good energy storage characteristics with a high energy storage density (9.7 J/cm3) and a high energy storage efficiency (78%). In addition, the energy storage density of the composite dielectric under high energy storage efficiency (90%) is effectively improved (25%). This result provides theoretical analysis and experience for the preparation of multilayer energy storage dielectrics which will promote the development and application of energy storage dielectrics.

5.
Front Microbiol ; 11: 603818, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391225

RESUMO

Treatment with rumen microorganisms improves the methane fermentation of undegradable lignocellulosic biomass; however, the role of endoglucanase in lignocellulose digestion remains unclear. This study was conducted to investigate endoglucanases contributing to cellulose degradation during treatment with rumen microorganisms, using carboxymethyl cellulose (CMC) as a substrate. The rate of CMC degradation increased for the first 24 h of treatment. Zymogram analysis revealed that endoglucanases of 52 and 53 kDa exhibited high enzyme activity for the first 12 h, whereas endoglucanases of 42, 50, and 101 kDa exhibited high enzyme activities from 12 to 24 h. This indicates that the activities of these five endoglucanases shifted and contributed to efficient CMC degradation. Metagenomic analysis revealed that the relative abundances of Selenomonas, Eudiplodinium, and Metadinium decreased after 12 h, which was positively correlated with the 52- and 53-kDa endoglucanases. Additionally, the relative abundances of Porphyromonas, Didinium, unclassified Bacteroidetes, Clostridiales family XI, Lachnospiraceae and Sphingobacteriaceae increased for the first 24 h, which was positively correlated with endoglucanases of 42, 50, and 101 kDa. This study suggests that uncharacterized and non-dominant microorganisms produce and/or contribute to activity of 40, 50, 52, 53, and 101 kDa endoglucanases, enhancing CMC degradation during treatment with rumen microorganisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...