Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 10(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829022

RESUMO

Three yeast strains, namely Cryptococcus albidus (Ca63), Cryptococcus albidus (Ca64), and Candida parapsilosis (Yett1006), and their combinations, including single yeast agent, two combined yeast strains, single yeast agent + NaHCO3, single yeast agent + chitosan, single yeast agent + ascorbic acid, and single yeast agent + konjac powder, were evaluated for their activity against Botrytis cinerea, the most economically important fungal pathogens causing postharvest disease of snap beans. In in vitro tests, no inhibition zone was observed in dual cultures of three yeast strains and B. cinerea. The mycelial growth inhibition rates of B. cinerea for Ca63, Ca64, and Yett1006 were 97%, 95%, and 97%, respectively. In in vivo tests, the optimal combination of the lowest disease index of snap beans with B. cinerea was Ca63 + Ca64, with a preventing effect of 75%. The decay rate and rust spots index of Ca64 + ascorbic acid combination were 25% and 20%, respectively, which were the lowest. The activities of defense-related enzymes increased, while malondialdehyde (MDA) content was suppressed in snap beans after different treatments. Our results highlight the potential of the three yeast strains and their combinations as new nonpolluting agents for the integrated control of B. cinerea on snap beans.

2.
Nat Commun ; 12(1): 2623, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976198

RESUMO

COVID-19 pandemic caused by SARS-CoV-2 constitutes a global public health crisis with enormous economic consequences. Monoclonal antibodies against SARS-CoV-2 can provide an important treatment option to fight COVID-19, especially for the most vulnerable populations. In this work, potent antibodies binding to SARS-CoV-2 Spike protein were identified from COVID-19 convalescent patients. Among them, P4A1 interacts directly with and covers majority of the Receptor Binding Motif of the Spike Receptor-Binding Domain, shown by high-resolution complex structure analysis. We further demonstrate the binding and neutralizing activities of P4A1 against wild type and mutant Spike proteins or pseudoviruses. P4A1 was subsequently engineered to reduce the potential risk for Antibody-Dependent Enhancement of infection and to extend its half-life. The engineered antibody exhibits an optimized pharmacokinetic and safety profile, and it results in complete viral clearance in a rhesus monkey model of COVID-19 following a single injection. These data suggest its potential against SARS-CoV-2 related diseases.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Especificidade de Anticorpos/imunologia , COVID-19/epidemiologia , Linhagem Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Feminino , Humanos , Macaca mulatta , Masculino , Mutação , Pandemias , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Resultado do Tratamento , Células Vero , Tratamento Farmacológico da COVID-19
3.
iScience ; 24(3): 102160, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33681726

RESUMO

Heterogeneous nuclear ribonucleoproteins (hnRNPs) play critical roles in the nuclear export, splicing, and sensing of RNA. However, the role of heterogeneous nuclear ribonucleoprotein A/B (hnRNPAB) is poorly understood. In this study, we report that hnRNPAB cooperates with nucleoprotein (NP) to restrict viral mRNA nuclear export via inhibiting viral mRNA binding to ALY and NXF1. HnRNPAB restricts mRNA transfer from ALY to NXF1, inhibiting the mRNA nuclear export. Moreover, when cells are invaded by influenza A virus, NP interacts with hnRNPAB and interrupts the ALY-UAP56 interaction, leading to repression of ALY-viral mRNA binding, and then inhibits the viral mRNA binding to NXF1, leading to nuclear stimulation of viral mRNA. Collectively, these observations provide a new role of hnRNPAB to act as an mRNA nuclear retention factor, which is also effective for viral mRNA of influenza A virus, and NP cooperates with hnRNPAB to further restrict the viral mRNA nuclear export.

4.
Pathogens ; 10(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396336

RESUMO

Botrytis cinerea infection can be very devastating for tomato production, as it can result in a large-scale reduction in tomato fruit production and fruit quality after harvest. Thus, it negatively affects tomato yield and quality. In this study, a biocontrol bacteria CQ-4 was isolated and screened from the rhizosphere soil of tomato plants. Morphological, physiological, and biochemical characteristics and 16S rDNA sequence analysis revealed that it belongs to the species Pseudomonas aeruginosa, which has a strong antagonistic effect against Botrytis cinerea. In addition, the bacterium's antibacterial spectrum is relatively extensive, and antagonistic tests have shown that it also has varying degrees of inhibition on other 12 plant diseases. The growth promotion test showed that the strain has a clear promotion effect on tomato seed germination and seedling growth. The growth-promoting effect on plant height, stem thickness, dry and fresh weight and main root length of tomato seedlings was significantly improved after the seeds were soaked in a bacterial solution of 2.5 × 108 cfu mL-1 concentration. This did not only maintain the nutritional quality of tomato fruits, but also prevents them from rotting. In vitro and pot experiments showed that the strain CQ-4 can effectively control tomato gray mold, and the control effects on tomato leaves and fruits reached 74.4% and 66.0%, respectively. Strain CQ-4 induce plants to up-regulate the activities of four disease-resistant defense enzymes. The peak enzymatic activities of Phenylalanine Ammonia Lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), and Superoxide Dismutase (SOD) were increased by 35.6%, 37.6%, 46.1%, and 38.4%, respectively, as compared with the control group. This study found that the strain can solubilize phosphorus, fix nitrogen, and produce cellulase, protease, ferrophilin, and other antibacterial metabolites, but it does not produce chitinase, glucanase, and HCN (hydrocyanic acid). This research screened out an excellent Pseudomonas aeruginosa strain that can stably and effectively control tomato gray mold, and it provided theoretical basis for further development and the application of biological agents.

5.
Breed Sci ; 69(2): 279-288, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31481837

RESUMO

Although some studies have been conducted on the effects of foreign protein expression on rice, the results vary with foreign gene types and protein expression. This study reveals the effects of fibroblast growth factor 21 (FGF21) expression on mature rice seeds in various aspects. Results revealed that the grain weight of the transgene rice was lower than that of non-transgenic wild-type. The sucrose content and ADP-glucose pyrophosphorylase (AGPase) activity in transgenic FGF21 rice were higher than that in non-transgenic wild-type rice, while changes in the starch content, starch branching enzyme (SBE), sucrose synthase (SuS), superoxide dismutase (SOD) and peroxidase (POD) activity were lower in transgenic FGF21 rice compared to non-transgenic wild-type. The scanning electron microscope results revealed that mature seeds of the transgenic FGF21 rice contained fewer vascular bundles with irregular arrangement compared to the wild-type. The mature seeds of CK and T1 rice lines were collected for proteome analysis, and 167 differentially expressed proteins (DEPs) were found. In addition, the most enriched pathways in both rice lines were determined to be amino sugar and nucleotide sugar metabolism and starch and sucrose metabolism, etc. This study laid the foundation for revealing the effects of exogenous protein expression on rice bioreactors.

6.
Appl Microbiol Biotechnol ; 102(13): 5645-5656, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29736821

RESUMO

M2 protein, a highly conserved protein of influenza A virus (IAV), plays an important role in virus particle uncoating, assembly, and budding. In the present study, eight monoclonal antibodies (mAbs) against the M2 protein of the H3N2 IAV strain were generated with recombinant truncated M2 protein or BSA-coupled M2 peptides as immunogens. The linear epitopes recognized by the mAbs were defined by IFA and peptide ELISA. The results showed that mAb 10F4 recognized an epitope located in the N-terminal 6-12 amino acids of the M2 peptide, and the mAbs 10D9, 1E2, 4B5, and 5G10 recognized the epitopes located in the C-terminal 62-77 amino acids of the M2 peptide. Importantly, mAb 10D9 recognized the M2 protein of H1-H13 IAV subtypes, which stained M2 protein located on the membrane of host cells and could be applied in immunoprecipitation and immunohistochemistry assays. The mAb 10D9 which recognizes the universal M2 epitope of IAVs will be a useful tool for studies on the function of IAV M2 protein and for the development of vaccines or detection methods for IAV infection.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Vírus da Influenza A/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Animais , Mapeamento de Epitopos , Epitopos/imunologia , Escherichia coli/genética , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologia
7.
Rice (N Y) ; 11(1): 24, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29671148

RESUMO

BACKGROUND: Cold stress can cause serious abiotic damage that limits the growth, development and yield of rice. Cold tolerance during the booting stage of rice is a key factor that can guarantee a high and stable yield under cold stress. The cold tolerance of rice is controlled by quantitative trait loci (QTLs). Based on the complex genetic basis of cold tolerance in rice, additional efforts are needed to detect reliable QTLs and identify candidate genes. In this study, recombinant inbred lines (RILs) derived from a cross between a cold sensitive variety, Dongnong422, and strongly cold-tolerant variety, Kongyu131, were used to screen for cold-tolerant loci at the booting stage of rice. RESULTS: A novel major QTL, qPSST6, controlling the percent seed set under cold water treatment (PSST) under the field conditions of 17 °C cold water irrigation was located on the 28.4 cM interval on chromosome 6. Using the combination of bulked-segregant analysis (BSA) and next-generation sequencing (NGS) technology (Seq-BSA), a 1.81 Mb region that contains 269 predicted genes on chromosome 6 was identified as the candidate region of qPSST6. Two genes, LOC_Os06g39740 and LOC_Os06g39750, were annotated as "response to cold" by gene ontology (GO) analysis. qRT-PCR analysis revealed that LOC_Os06g39750 was strongly induced by cold stress. Haplotype analysis also demonstrate a key role of LOC_Os06g39750 in regulating the PSST of rice, suggesting that it was the candidate gene of qPSST6. CONCLUSIONS: The information obtained in this study is useful for gene cloning of qPSST6 and for breeding cold-tolerant varieties of rice using marker assisted selection (MAS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...