Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5759-5766, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114171

RESUMO

Paeonia veitchii and P. lactiflora are both original plants of the famous Chinese medicinal drug Paeoniae Radix Rubra in the Chinese Pharmacopoeia. They have important medicinal value and great potential in the flower market. The selection of stable and reliable reference genes is a necessary prerequisite for molecular research on P. veitchii. In this study, two reference genes, Actin and GAPDH, were selected as candidate genes from the transcriptome data of P. veitchii. The expression levels of the two candidate genes in different tissues(phloem, xylem, stem, leaf, petiole, and ovary) and different growth stages(bud stage, flowering stage, and dormant stage) of P. veitchii were detected using real-time fluorescence quantitative technology(qRT-PCR). Then, the stability of the expression of the two reference genes was comprehensively analyzed using geNorm, NormFinder, BestKeeper, ΔCT, and RefFinder. The results showed that the expression patterns of Actin and GAPDH were stable in different tissues and growth stages of P. veitchii. Furthermore, the expression levels of eight genes(Pv-TPS01, Pv-TPS02, Pv-CYP01, Pv-CYP02, Pv-CYP03, Pv-BAHD01, Pv-UGT01, and Pv-UGT02) in different tissues were further detected based on the transcriptome data of P. veitchii. The results showed that when Actin and GAPDH were used as reference genes, the expression trends of the eight genes in different tissues of P. veitchii were consistent, validating the reliability of Actin and GAPDH as reference genes for P. veitchii. In conclusion, this study finds that Actin and GAPDH can be used as reference genes for studying gene expression levels in different tissues and growth stages of P. veitchii.


Assuntos
Paeonia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Paeonia/genética , Actinas/genética , Reprodutibilidade dos Testes , Transcriptoma , Gliceraldeído-3-Fosfato Desidrogenases/genética , Padrões de Referência , Perfilação da Expressão Gênica/métodos
2.
BMC Genomics ; 24(1): 45, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36698081

RESUMO

BACKGROUND: Paeonia veitchii Lynch, a well-known herb from the Qinghai-Tibet Plateau south of the Himalayas, can synthesize specific monoterpene glycosides (PMGs) with multiple pharmacological activities, and its rhizome has become an indispensable ingredient in many clinical drugs. However, little is known about the molecular background of P. veitchii, especially the genes involved in the biosynthetic pathway of PMGs. RESULTS: A corrective full-length transcriptome with 30,827 unigenes was generated by combining next-generation sequencing (NGS) and single-molecule real-time sequencing (SMRT) of six tissues (leaf, stem, petal, ovary, phloem and xylem). The enzymes terpene synthase (TPS), cytochrome P450 (CYP), UDP-glycosyltransferase (UGT), and BAHD acyltransferase, which participate in the biosynthesis of PMGs, were systematically characterized, and their functions related to PMG biosynthesis were analysed. With further insight into TPSs, CYPs, UGTs and BAHDs involved in PMG biosynthesis, the weighted gene coexpression network analysis (WGCNA) method was used to identify the relationships between these genes and PMGs. Finally, 8 TPSs, 22 CYPs, 7 UGTs, and 2 BAHD genes were obtained, and these putative genes were very likely to be involved in the biosynthesis of PMGs. In addition, the expression patterns of the putative genes and the accumulation of PMGs in tissues suggested that all tissues are capable of biosynthesizing PMGs and that aerial plant parts could also be used to extract PMGs. CONCLUSION: We generated a large-scale transcriptome database across the major tissues in P. veitchii, providing valuable support for further research investigating P. veitchii and understanding the genetic information of plants from the Qinghai-Tibet Plateau. TPSs, CYPs, UGTs and BAHDs further contribute to a better understanding of the biology and complexity of PMGs in P. veitchii. Our study will help reveal the mechanisms underlying the biosynthesis pathway of these specific monoterpene glycosides and aid in the comprehensive utilization of this multifunctional plant.


Assuntos
Monoterpenos , Paeonia , Glicosídeos , Paeonia/genética , Vias Biossintéticas/genética , Transcriptoma , Perfilação da Expressão Gênica/métodos
3.
Front Plant Sci ; 13: 1041321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523614

RESUMO

Background: Nardostachys jatamansi, an extremely endangered valuable plant of the alpine Himalayas, can synthesize specific sesquiterpenoids with multiple effective therapies and is widely exploited for the preparation of drugs, cosmetics and even religious functions (e.g., well-known spikenard). However, how accumulation trend of the sesquiterpenoids in tissues and the molecular mechanisms underlying the production of the active ingredients are not well understood. Methods: The single-molecule real-time (SMRT) and RNA-seq transcriptome sequencing were combined to analyse the roots, rhizomes, leaves, flowers and anthocaulus of N. jatamansi. The phytochemical analysis was performed by gas chromatography‒mass spectrometry (GC‒MS) and ultrahigh-performance liquid chromatography (UPLC). Results: A high-quality full-length reference transcriptome with 26,503 unigenes was generated for the first time. For volatile components, a total of sixty-five compounds were successfully identified, including fifty sesquiterpenoids. Their accumulation levels in five tissues were significantly varied, and most of the sesquiterpenoids were mainly enriched in roots and rhizomes. In addition, five aromatic compounds were only detected in flowers, which may help the plant attract insects for pollination. For nonvolatile ingredients, nardosinone-type sesquiterpenoids (nardosinone, kanshone C, and isonardosinone) were detected almost exclusively in roots and rhizomes. The candidate genes associated with sesquiterpenoid biosynthesis were identified by transcriptome analysis. Consistently, it was found that most biosynthesis genes were abundantly expressed in the roots and rhizomes according to the functional enrichment and expression patterns results. There was a positive correlation between the expression profile of genes related to the biosynthesis and the accumulation level of sesquiterpenoids in tissues. Gene family function analysis identified 28 NjTPSs and 43 NjCYPs that may be involved in the biosynthesis of the corresponding sesquiterpenoids. Furthermore, gene family functional analysis and gene coexpression network analysis revealed 28 NjTPSs and 43 NjCYPs associated with nardosinone-type sesquiterpenoid biosynthesis. Conclusion: Our research results reveal the framework of sesquiterpenoids accumulation and biosynthesis in plant tissues and provide valuable support for further studies to elucidate the molecular mechanisms of sesquiterpenoid regulation and accumulation in N. jatamansi and will also contribute to the comprehensive utilization of this alpine plant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...