Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 213: 113748, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37286023

RESUMO

Ten undescribed diterpenoids namely rubellawus E-N of structural types pimarane (1, 3-4), nor-abietane (2), nor-pimarane (5-6), isopimarane (7-9), and nor-isopimarane (10), along with eleven known compounds, were isolated and identified from the aerial parts of Callicarpa rubella Lindl. The structures of the isolated compounds were confirmed by comprehensive spectroscopic analyses and quantum chemical computations. Pharmacologically, almost all the compounds exhibited a potential inhibitory effect on oxidized low-density lipoprotein-induced macrophage foam cell formation, which suggests that these compounds may be promising candidates in the treatment of atherosclerosis.


Assuntos
Callicarpa , Diterpenos , Rubéola (Sarampo Alemão) , Abietanos/química , Callicarpa/química , Células Espumosas , Estrutura Molecular , Folhas de Planta/química , Diterpenos/química , Macrófagos , Rubéola (Sarampo Alemão)/metabolismo
2.
Front Pharmacol ; 14: 1066758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36713845

RESUMO

Introduction: Atherosclerosis is the main cause of many cardiovascular diseases and contributes to morbidity and mortality worldwide. The formation of macrophage-derived foam cells plays a critical role in the early stage of atherosclerosis pathogenesis. Diterpenoids found in the flowers of Callicarpa rubella Lindl., a traditional Chinese medicine, have been reported to have anti-inflammatory activity. However, little is known about the effects of these diterpenoids on macrophage foam cell formation. Methods: A macrophage-derived foam cell formation model was established by treating RAW264.7 cells with oxidized low-density lipoprotein (ox-LDL) for 24 h. Oil red O staining were used to detect the intracellular lipids. The cholesterol efflux capacity was assayed by labeling cells with 22-NBD-cholesterol. Western blots and real-time PCRs were performed to quantify protein and mRNA expressions. Results: Two diterpenoid molecules, 14α-hydroxyisopimaric acid (C069002) and isopimaric acid (C069004), extracted from the flowers of Callicarpa rubella Lindl., significantly attenuated ox-LDL-induced foam cell formation in RAW264.7 macrophages. Further investigation showed that these two diterpenoids could promote cholesterol efflux from RAW264.7 macrophages to apolipoprotein A-I or high-density lipoproteins, which was associated with upregulated expression of ATP-binding cassette A1/G1 (ABCA1/G1), liver X receptor-α (LXRα), and peroxisome proliferator-activated receptor-γ (PPARγ). Unexpectedly, the diterpenoids C069002 and C069004 failed to enhance the mRNA transcription of the ABCG1 gene in macrophage-derived foam cells induced by ox-LDL. To evaluate the effects of diterpenoids on macrophage foam cell formation and determine the underlying mechanism, two drugs (lovastatin and rosiglitazone) were used as positive controls. Although both drugs could reduce macrophage foam cell formation and promote cholesterol efflux, they each had distinctive abilities to modulate the expression of cholesterol efflux-related genes. In contrast to lovastatin, rosiglitazone showed a similar influence on the expression of cholesterol efflux-related genes (including ABCA1, LXRα, and PPARγ) as the diterpenoids regardless of the presence or absence of ox-LDL, implying a similar mechanism by which they may exert atheroprotective effects. Conclusion: Our research indicates that diterpenoids effectively inhibit ox-LDL-induced macrophage foam cell formation by promoting cholesterol efflux from macrophages via the PPARγ-LXRα-ABCA1 pathway. Further investigation of diterpenoids as potential drugs for the treatment of atherosclerosis is warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...