Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2311128, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888124

RESUMO

Intracerebral hemorrhage (ICH) is a hemorrhagic disease with high mortality and disability rates. Curcumin is a promising drug for ICH treatment due to its multiple biological activities, but its application is limited by its poor watersolubility and instability. Herein, platelet membrane-coated curcumin polylactic-co-glycolic acid (PLGA) nanoparticles (PCNPs) are prepared to achieve significantly improved solubility, stability, and sustained release of curcumin. Fourier transform infrared spectra and X-ray diffraction assays indicate good encapsulation of curcumin within nanoparticles. Moreover, it is revealed for the first time that curcumin-loaded nanoparticles can not only suppress hemin-induced astrocyte proliferation but also induce astrocytes into neuron-like cells in vitro. PCNPs are used to treat rat ICH by tail vein injection, using in situ administration as control. The results show that PCNPs are more effective than curcumin-PLGA nanoparticles in concentrating on hemorrhagic lesions, inhibiting inflammation, suppressing astrogliosis, promoting neurogenesis, and improving motor functions. The treatment efficacy of intravenously administered PCNPs is comparable to that of in situ administration, indicating a good targeting effect of PCNPs on the hemorrhage site. This study provides a potent treatment for hemorrhagic injuries and a promising solution for efficient delivery of water-insoluble drugs using composite materials of macromolecules and cell membranes.

2.
Materials (Basel) ; 17(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612122

RESUMO

The effects of Ti doping on the microstructure and properties of SiCp/Al composites fabricated by pressureless infiltration were comprehensively investigated using first-principles calculations and experimental analyses. First-principles calculations revealed that the interface wetting and bonding strength in an Al/SiC system could be significantly enhanced by Ti doping. Subsequently, the Ti element was incorporated into SiC preforms in the form of TiO2 and TiC to verify the influence of Ti doping on the pressureless infiltration performance of SiCp/Al composites. The experimental results demonstrated that the pressureless infiltration of molten Al into SiC preforms was promoted by adding TiC or TiO2 due to the improved wettability. However, incorporating TiO2 leads to the growth of AlN whiskers under a N2 atmosphere, thereby hindering the complete densification of the composites. On the other hand, TiC doping can improve wettability and interface strength without deleterious reactions. As a consequence, the TiC-doped SiCp/Al composites exhibited excellent properties, including a high relative density of 99.4%, a bending strength of 287 ± 18 MPa, and a thermal conductivity of 142 W·m-1·K-1.

3.
Ecotoxicol Environ Saf ; 169: 353-360, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30458402

RESUMO

The adsorption of phthalate esters (PAEs) in mangrove sediment greatly influences their availability to aquatic organisms, however, the adsorption processes of PAEs in mangrove sediment, as well as the effects of root exudates, are poorly understood. In this study, dimethyl phthalate (DMP), diethyl phthalate (DEP) and dibutyl phthalate (DBP) was used as model PAEs to determine the effects and mechanism of citric acid on the adsorption kinetics and isotherms of PAEs in the mangrove sediments. The adsorption kinetics followed pseudo-second order model, describing the characteristics of heterogeneous chemisorption of PAEs in mangrove sediments. The adsorption isotherms of DMP and DEP followed Freundlich model, implying the characteristics of surface multilayer heterogeneous adsorption; while the Henry model better described the adsorption isotherms of DBP, suggesting that hydrophobic partition accounted for DBP adsorption in the mangrove sediments. Inter-chemical variability was observed in adsorption capacity (qe) with the sequence of DBP > DEP > DMP. Surface polarity index ((C-O + COOH + C˭O)%) of particulate organic matter (POM) regulated the adsorption capacity of DMP and DEP in mangrove sediments, while different POM content among mangrove sediments explained the difference in the sorption strength for DBP. The presence of citric acid enhanced the qe of the three PAEs by 6.4-12.6%. These findings are of great significance to reveal that the root exudates play a crucial role in the PAEs adsorption in mangrove sediments, and provide valuable information for availability of PAEs in mangrove ecosystem.


Assuntos
Ácido Cítrico/química , Sedimentos Geológicos/química , Modelos Teóricos , Ácidos Ftálicos/análise , Áreas Alagadas , Adsorção , China , Ésteres , Interações Hidrofóbicas e Hidrofílicas , Cinética
4.
Ecotoxicol Environ Saf ; 162: 10-16, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29957403

RESUMO

Nitrated polycyclic aromatic hydrocarbons (NPAHs) are PAH derivatives with more toxic effects to ecosystem, and the partitioning of NPAHs in crop system constitutes the potential exposure to human health through the dietary pathway. In the present study, a novel method for in situ detection of 9-nitroanthracene (9-NAnt) and 3-nitrofluoranthene (3-NFla) adsorbed onto the leaf surfaces of living soybean and maize seedlings was established based on the fiber-optic fluorimetry combined with graphene quantum dots (GQDs) as a fluorescent probe. The detection limits for the in situ quantification of the two adsorbed NPAHs ranged from 0.8 to 1.6 ng/spot (spot represents determination unit, 0.28 cm2 per spot). Using the novel method, the effects of GQDs on the adsorption of individual 9-NAnt and 3-NFla by the living soybean and maize leaf surfaces were in situ investigated. The presence of GQDs altered the adsorption mechanism from the sole film diffusion to the combination of film diffusion and intra-particle diffusion, and shortened the time required to achieving adsorption equilibrium by 15.8-21.7%. Significant inter-species and inter-chemical variability existed in terms of the equilibrated adsorption capacity (qe) with the sequence of soybean > maize and 3-NFla > 9-NAnt. The occurrence of GQDs enlarged the qe values of 9-NAnt and 3-NFla by 22.8% versus 28.7% for soybean, and 16.2% versus 20.3% for maize, respectively, which was largely attributed to GQDs-induced expansion to the surface area for adsorbing NPHAs and the stronger electrostatic interaction between the -NO2 of NPAH molecules and the functional groups (e.g., -COOH, -OH) of GQDs outer surfaces. And, the varied enhancement degrees in the order of 3-NFla > 9-NAnt might be explained by the steric effects that resulted in the easier accessibility of -NO2 of 3-NFla to the outer surface of GQDs. Summarily, the GQDs increased the retention of NPAHs on crop leaf surfaces, potentially threatening the crop security.


Assuntos
Corantes Fluorescentes , Fluorometria/métodos , Glycine max/química , Grafite , Hidrocarbonetos Policíclicos Aromáticos/análise , Pontos Quânticos , Zea mays/química , Adsorção , Antracenos/análise , Produtos Agrícolas/química , Fluorenos/análise , Folhas de Planta/química , Plântula/química , Glycine max/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
5.
Environ Pollut ; 237: 968-976, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29137885

RESUMO

To further assess the human being's exposure to polycyclic aromatic hydrocarbons (PAHs) through the dietary pathway, understanding the partitioning of these chemicals co-existed with nanomaterials in edible vegetable systems deserves specific consideration. In this study, the fiber-optic fluorimetry was applied to in situ examine the effects of graphene (GNS) and graphene oxide (GO) nanosheets on the quantification and depuration of three-ringed phenanthrene (Phe) and four-ringed fluoranthene (Fla) adsorbed individually onto the living spinach (Spinacia oleracea L.) surfaces. When the GNS and GO dosages separately increased to the maximum values: a respective red-shift of 4-5 nm and blue-shift of 2-3 nm occurred for the optimal detection emission wavelengths (λem) of the two PAHs, indicating that individual GNS and GO resulted in different changes to the epicuticular wax (ECW) polarity; GNS-inducing fluorescence quenching for the PAHs was about two times greater than GO, owing to the stronger π-π interactions between PAH molecules and GNS relative to GO; the volatilization coefficients (kC1) were reduced by 31.1% versus 26.7% for Phe, and 51.6% versus 34.4% for Fla, mainly via providing an additional adsorbent and promoting the accessibility of the leaf cuticle; respective photolysis coefficients (kP2) of Phe and Fla decreased by 42.9% and 50.0% with GNS, primarily owing to the enhancement of the ECW light-adsorption capacity, but increased by 33.3% and 40.0% with GO due to its photocatalytic activities; overall, total depuration coefficients (kT1, kT2) of the two PAHs decreased by 11.1-55.6%. These findings demonstrate that GNS and GO significantly alter the depuration behavior of PAHs in vegetable systems, potentially posing a threat to the safety of edible vegetables.


Assuntos
Grafite/química , Fenantrenos/metabolismo , Folhas de Planta/química , Spinacia oleracea/metabolismo , Adsorção , Fluorenos , Fluorometria , Humanos , Óxidos/química , Fenantrenos/química , Fotólise , Folhas de Planta/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Spinacia oleracea/química
6.
Huan Jing Ke Xue ; 34(4): 1270-6, 2013 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-23798102

RESUMO

With the closed chamber and gas chromatography method, a 24-hour continuous monitoring was carried out to understand the greenhouse gases fluxes across the water-air interface of the Xiangxi River Bay, the Three-Gorges Reservoir in Autumn. Results indicated that the fluxes of CO2, CH4 and N2O across the water-air interface showed an obvious diurnal variation. The absorption and emission process of CH4 showed strong diurnal variation during the experimental period, reaching the highest emission at 1 am, whereas CO2 and N2O were emitted all day. The fluxes of CO2 ranged from 20.1-97.5 mg x (m2 x h)(-1) at day and 32.7-42.5 mg x (m2 x h)(-1) at night, the fluxes of N2O ranged from 18.4-133.7 microg x (m2 x h)(-1) at day and 42.1-102.6 microg x (m2 x h)(-1) at night. The fluxes of CO2 had positive correlation with wind speed and negative correlation with pH. The fluxes of N2O had positive correlation with pH.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Efeito Estufa , Metanol/análise , Poluentes Químicos da Água/análise , Ar/análise , China , Monitoramento Ambiental , Gases/análise , Óxido Nítrico/análise , Rios/química , Estações do Ano , Água/química , Abastecimento de Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...