Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36673242

RESUMO

In this paper, we conduct a survey of the literature about reinforcement learning (RL)-based medium access control (MAC) protocols. As the scale of the wireless ad hoc network (WANET) increases, traditional MAC solutions are becoming obsolete. Dynamic topology, resource allocation, interference management, limited bandwidth and energy constraint are crucial problems needing resolution for designing modern WANET architectures. In order for future MAC protocols to overcome the current limitations in frequently changing WANETs, more intelligence need to be deployed to maintain efficient communications. After introducing some classic RL schemes, we investigate the existing state-of-the-art MAC protocols and related solutions for WANETs according to the MAC reference model and discuss how each proposed protocol works and the challenging issues on the related MAC model components. Finally, this paper discusses future research directions on how RL can be used to enable MAC protocols for high performance.

2.
Soft Robot ; 9(5): 889-899, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34939854

RESUMO

Tens of thousands of planetary small bodies (asteroids, comets, and small moons) are flying beside our Earth with little understanding. Explorers on the surfaces of these bodies, unlike the Lunar or Mars rovers, have only few attempts and no sophisticated solution. Current concerns mainly focus on landing uncertainties and mobility limitations, which soft robots may suitably aid utilizing their compliance and adaptivity. In this study, we present a perspective of designating soft robots for the surface exploration. Based on the lessons from recent space missions and an astronomy survey, we summarize the surface features of typical small bodies and the associated challenges for possible soft robotic design. Different kinds of soft mobile robots are reviewed, whose morphology and locomotion are analyzed for the microgravity, rugged environment. We also propose an alternative to current asteroid hoppers, as a case of applying progress in soft material. Specifically, the structure is a deployable cube whose outer shell is made of shape memory polymer, so that it can achieve morphing and variable stiffness between liftoff and landing phases. Dynamic simulations of the free-fall landing are carried out with a rigid counterpart for comparison. The results show that the soft deployed shell can effectively contribute to dissipating the kinetic energy and attenuating the excessive rebounds.


Assuntos
Robótica , Materiais Inteligentes , Voo Espacial , Humanos , Meio Ambiente Extraterreno , Planetas
3.
Soft Robot ; 8(5): 507-518, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32822273

RESUMO

Emerging worm-like soft robots with various soft materials and different actuation mechanism have been frequently discussed. It is very challenging for soft robots in realizing a fast and untethered crawling. In this article, a biomimetic magnet embedded worm-like robot (shorted as "MagWorm") in the size of centimeter level is designed and investigated. The actuation of the MagWorm is achieved by housing permanent magnetic patches in its soft body, which interact with an external moving drive-magnet system. A dynamic model is established, coupling the discrete elastic rod model with magnetic actuation. The driving mechanism is then numerically studied. Quantitative comparisons between the numerical solution and experiment results show reasonable agreement. It is shown that the MagWorm can deform part of its body into a "Ω" shape and generate biomimetic crawling locomotion. The crawling speed of the robot is studied experimentally with different sizes. Some potential applications are also proposed and demonstrated. The MagWorm represents compact and low-cost solutions that use permanent magnets for remote actuation of soft robot and can be continuously operated during long procedures.


Assuntos
Biomimética , Robótica , Desenho de Equipamento , Locomoção , Imãs , Robótica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...