Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 14(3): 934-958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590424

RESUMO

Pyroptosis, a gasdermin-mediated lytic cell death, is a new hotspot topic in cancer research, and induction of tumor pyroptosis has emerged as a new target in cancer management. Quercetin (Que), a natural substance, demonstrates promising anticancer action. However, further information is required to fully comprehend the function and mechanism of Que in pyroptosis in colon cancer. This study revealed the underlying mechanism of Que-induced pyroptosis in colon cancer in vitro and in vivo. Que inhibited colon cancer cell growth through gasdermin D (GSDMD)-mediated pyroptosis. Depletion of GSDMD, rather than gasdermin E (GSDME), reversed the cytotoxic effects of Que on colon cancer cells. Que treatment upregulated NIMA-related kinase 7 (NEK7) protein expression, thus facilitating the assembly of the NLRP3 inflammasome and cleavage of GSDMD. NEK7 silencing resulted in colon cancer cell growth in vitro and in vivo. Mechanistically, NEK7 depression restrained the activation of the NLRP3 inflammasome-GSDMD pathway, thus attenuating pyroptosis triggered by Que in colon cancer cells. Furthermore, lower NEK7 and NLRP3 expression levels indicated colon cancer progression. Our results unveiled a novel pattern of anti-colon cancer activity of Que, and activation of NEK7-mediated pyroptosis is potentially a promising therapeutic target for colon cancer, which provides novel experimental proof for the clinical application of Que.

2.
Drug Des Devel Ther ; 15: 705-720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33658761

RESUMO

PURPOSE: This study aimed to reveal Danggui Buxue Decoction (DBD) candidate targets and mechanisms in the treatment of metastatic colon cancer (MCC), using network pharmacology-based analyses and experimental validation. METHODS: Traditional Chinese Medicine Systems Pharmacology (TCMSP) database query and text mining were used to screen active compounds in DBD, and the Swiss target prediction platform was applied to predict compound-related target proteins. Targets likely associated with MCC were determined using GeneCards and OMIM databases. Targets common to DBD and MCC were obtained from the Venn platform; subsequently, Cytoscape was used to construct drug-compound-target-disease and protein-protein interaction networks. The hub gene was determined by R, while GO and KEGG enrichment analyses were performed on common targets to elucidate biological processes and signaling pathways involved in DBD against MCC. Finally, the metastatic colon cancer mouse model was used to detect the levels of expression of protein Bax, Bcl2, Caspase3, and Cleaved caspase3 by Western blot. RESULTS: A total of 28 active compounds and 61 common targets were predicted. The main compounds were quercetin, hederagenin, jaranol, methylnissolin, formononetin, calycosin, kaempferol, 3.9-di-O-methylnissolin, 24-propylcholesterol, and 7-O-methylisomucronulatol, present in Astragalus membranaceus (Huangqi, HQ). In addition, beta-sitosterol, ferulic acid, and stigmasterol, present in Angelica sinensis (Danggui, DG), were detected. JUN, PTSG2, EGFR, ESR1and, CASP3 genes were the top 5 hub genes in the PPI network. GO and KEGG enrichment analyses indicated that apoptosis played a major role in the biological processes and signaling pathways involved. Moreover, the in vivo experiment revealed that DBD inhibited MCC by up-regulating the expression of Bax, Caspase3, and Cleaved caspase3, and by down-regulating the expression of Bcl2. CONCLUSION: This study revealed candidate DBD targets and mechanisms in the treatment of MCC, using network pharmacology-based analyses and experimental validation. The present findings provide a reference for tumor treatment during the perioperative period.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Animais , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...