Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(31)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38663420

RESUMO

We investigated the band renormalization caused by the compressive-strain-induced lattice mismatch in parallel AA stacked bilayer graphene using two complementary methods: the tight-binding approach and the low-energy continuum theory. While a large mismatch does not alter the low-energy bands, a small one reduces the bandwidth of the low-energy bands along with a decrease in the Fermi velocity. In the tiny-mismatch regime, the low-energy continuum theory reveals that the long-period moiré pattern extensively renormalizes the low-energy bands, resulting in a significant reduction of bandwidth. Meanwhile, the Fermi velocity exhibits an oscillatory behavior and approaches zero at specific mismatches. However, the resulting low-energy bands are not perfectly isolated flat, as seen in twisted bilayer graphene at magic angles. These findings provide a deeper understanding of moiré physics and offer valuable guidance for related experimental studies in creating moiré superlattices using two-dimensional van der Waals heterostructures.

2.
Nanomaterials (Basel) ; 13(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903672

RESUMO

In this paper, we propose an optically controlling broadband terahertz modulator of a layer-dependent PtSe2 nanofilm based on a high-resistance silicon substrate. Through optical pump and terahertz probe system, the results show that compared with 6-, 10-, and 20-layer films, a 3-layer PtSe2 nanofilm has better surface photoconductivity in the terahertz band and has a higher plasma frequency ωp of 0.23 THz and a lower scattering time τs of 70 fs by Drude-Smith fitting. By the terahertz time-domain spectroscopy system, the broadband amplitude modulation of a 3-layer PtSe2 film in the range of 0.1-1.6 THz was obtained, and the modulation depth reached 50.9% at a pump density of 2.5 W/cm2. This work proves that PtSe2 nanofilm devices are suitable for terahertz modulators.

3.
J Phys Condens Matter ; 34(3)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34663768

RESUMO

We study the higher-order topological spin phases based on a spin analogue of Benalcazar-Bernevig-Hughes model in two dimensions using large-scale quantum Monte Carlo simulations. A continuous Néel-valence bond solid quantum phase transition is revealed by tuning the ratio between dimerized spin couplings, namely, the weak and strong exchange couplings. Through the finite-size scaling analysis, we identify the phase critical points, and consequently, map out the full phase diagrams in related parameter spaces. Particularly, we find that the valence bond solid phase can be a higher-order topological spin phase, which has a gap for spin excitations in the bulk while demonstrates characteristic gapless spin modes at corners of open lattices. We further discuss the connection between the higher-order topological spin phases and the electronic correlated higher-order phases, and find both of them possess gapless spin corner modes that are protected by higher-order topology. Our result exemplifies higher-order physics in the correlated spin systems and will contribute to further understandings of the many-body higher-order topological phenomena.

4.
J Phys Condens Matter ; 33(33)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34111850

RESUMO

The effect of many-body interaction in curved space is studied based on the extended Bose-Hubbard model on hyperbolic lattices. Using the mean-field approximation and quantum Monte Carlo simulation, the phase diagram is explicitly mapped out, which contains the superfluid, supersolid and insulator phases at various fillings. Particularly, it is revealed that the sizes of the Mott lobes shrink and the supersolid is stabilized at smaller nearest-neighbor interaction asqin the Schläfli symbol increases. The underlying physical mechanism is attributed to the increase of the coordination number, and hence the kinetic energy and the nearest-neighbor interaction. The results suggest that the hyperbolic lattices may be a unique platform to study the effect of the coordination number on quantum phase transitions, which may be relevant to the experiments of ultracold atoms in optical lattices.

5.
J Phys Condens Matter ; 31(50): 505601, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31469096

RESUMO

Based on the Hubbard models, quantum magnetism of topologically-designed graphene nanoribbons (GNRs) is studied using exact numerical simulations. We first study a two-band Hubbard model describing the low-energy topological bands using the density matrix renormalization group (DMRG) and determinant quantum Monte Carlo (DQMC) methods. It is found the spin correlations decay quickly with distance, and the local moment is extrapolated to zero in the presence of symmetry-breaking terms. The results show that the two-band Hubbard chain is nonmagnetic, which is in contrast to the mean-field calculation predicting a critical interaction for the magnetic transition. We then include the Hubbard interaction to the topological-designed GNRs. For large interactions, the spin correlations remain finite for all distances, and the magnetic order develops. The local moment is extrapolated to almost zero for weak interactions, and begins to increase rapidly from a critical interaction. The estimated critical value is much larger than the realistic value in graphene, and we conclude the experimentally relevant GNRs are nonmagnetic, which is consistent with the experimental results.

6.
J Phys Condens Matter ; 28(33): 335601, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27351111

RESUMO

The notion of the electron Fermi surface is one of the characteristic concepts in the field of condensed matter physics, and it plays a crucial role in the understanding of the physical properties of doped Mott insulators. Based on the t-J model, we study the nature of the electron Fermi surface in the cobaltates, and qualitatively reproduce the essential feature of the evolution of the electron Fermi surface with doping. It is shown that the underlying hexagonal electron Fermi surface obeys Luttinger's theorem. The theory also predicts a Fermi-arc phenomenon at the low-doped regime, where the region of the hexagonal electron Fermi surface along the [Formula: see text]-K direction is suppressed by the electron self-energy, and then six disconnected Fermi arcs located at the region of the hexagonal electron Fermi surface along the [Formula: see text]-M direction emerge. However, this Fermi-arc phenomenon at the low-doped regime weakens with the increase of doping.

7.
J Phys Condens Matter ; 23(34): 345701, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21841231

RESUMO

Within the two-leg t-J ladder, the spin dynamics of the pressure-induced two-leg ladder cuprate superconductor Sr(14-x)Ca(x)Cu(24)O(41). is studied based on the kinetic energy driven superconducting mechanism. It is shown that in the pressure-induced superconducting state, the incommensurate spin correlation appears in the underpressure regime, while the commensurate spin fluctuation emerges in the optimal pressure and overpressure regimes. In particular, the spin-lattice relaxation time is dominated by a temperature linear dependence term at low temperature followed by a peak developed below the superconducting transition temperature, in qualitative agreement with the experimental observation on Sr(14-x)Ca(x)Cu(24)O(41)..

8.
J Phys Condens Matter ; 23(20): 205501, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21540514

RESUMO

We undertake an exact numerical study of the effects of disorder on the Anderson localization of electronic states in graphene. Analyzing the scaling behaviors of inverse participation ratio and geometrically averaged density of states, we find that the Anderson metal-insulator transition can be introduced by the presence of quenched random disorder. In contrast with the conventional picture of localization, four mobility edges can be observed for the honeycomb lattice with specific disorder strength and impurity concentration. Considering the screening effects of interactions on disorder potentials, the experimental findings of the scale enlargements of puddles can be explained by reviewing the effects of both interactions and disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...