Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38930650

RESUMO

A novel high-speed and process-compatible carrier-stored trench-gate bipolar transistor (CSTBT) combined with split-gate technology is proposed in this paper. The device features a split polysilicon electrode in the trench, where the left portion is equipotential with the cathode. This design mitigates the impact of the anode on the trench gate, resulting in a reduction in the gate-collector capacitance (CGC) to improve the dynamic characteristics. On the left side of the device cell, the P-layer, the carrier-stored (CS) layer and the P-body are formed from the bottom up by ion implantation and annealing. The P-layer beneath the trench bottom can decrease the electric field at the bottom of the trench, thereby improving breakdown voltage (BV) performance. Simultaneously, the highly doped CS layer strengthens the hole-accumulation effect at the cathode. Moreover, the PNP doping layers on the left form a self-biased pMOS. In a short-circuit state, the self-biased pMOS turns on at a certain collector voltage, causing the potential of the CS-layer to be clamped by the hole channel. Consequently, the short-circuit current no longer increases with the collector voltage. The simulation results reveal significant improvements in comparison with the conventional CSTBT under the same on-state voltage (1.48 V for 100 A/cm2). Specifically, the turn-off time (toff) and turn-off loss (Eoff) are reduced by 38.4% and 41.8%, respectively. The short-circuit current is decreased by 50%, while the short-circuit time of the device is increased by 2.46 times.

2.
BMC Pediatr ; 24(1): 136, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383331

RESUMO

OBJECTIVE: To explore the effect of repetitive transcranial magnetic stimulation (rTMS)-assisted training on lower limb motor function in children with hemiplegic cerebral palsy (HCP). METHOD: Thirty-one children with HCP who met the inclusion criteria were selected and randomly divided into a control group (n = 16) and an experimental group (n = 15). The control group received routine rehabilitation treatment for 30 min each time, twice a day, 5 days a week for 4 weeks. Based on the control group, the experimental group received rTMS for 20 min each time, once a day, 5 days a week for 4 weeks. The outcome measures included a 10-metre walk test (10MWT), a 6-minute walk distance (6MWD) test, D- and E-zone gross motor function measurements (GMFM), the symmetry ratio of the step length and stance time and the muscle tone of the triceps surae and the hamstrings (evaluated according to the modified Ashworth scale), which were obtained in both groups of children before and after treatment. RESULTS: After training, the 10MWT (P < 0.05), 6MWD (P < 0.01), GMFM (P < 0.001) and the symmetry ratio of the step length and stance time of the two groups were significantly improved (P < 0.05), there was more of an improvement in the experimental group compared with the control group. There was no significant change in the muscle tone of the hamstrings between the two groups before and after treatment (P > 0.05). After treatment, the muscle tone of the triceps surae in the experimental group was significantly reduced (P < 0.05), but there was no significant change in the control group (P > 0.05). CONCLUSION: Repetitive TMS-assisted training can improve lower limb motor function in children with HCP.


Assuntos
Paralisia Cerebral , Estimulação Magnética Transcraniana , Criança , Humanos , Hemiplegia/etiologia , Extremidade Inferior , Caminhada
3.
Life Sci ; 338: 122409, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184273

RESUMO

The ubiquitin-proteasome system (UPS) is a multi-step process that serves as the primary pathway for protein degradation within cells. UPS activity also plays a crucial role in regulating various life processes, including the cell cycle, signal transduction, DNA repair, and others. The F-box protein Skp2, a crucial member of the UPS, plays a central role in the development of various diseases. Skp2 controls cancer cell growth and drug resistance by ubiquitinating modifications to a variety of proteins. This review emphasizes the multifaceted role of Skp2 in a wide range of cancers and the mechanisms involved, highlighting the potential of Skp2 as a therapeutic target in cancer. Additionally, we describe the impactful influence exerted by Skp2 in various other diseases beyond cancer.


Assuntos
Neoplasias , Proteínas Quinases Associadas a Fase S , Humanos , Ciclo Celular , Neoplasias/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitinação
4.
Micromachines (Basel) ; 14(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241661

RESUMO

A novel Performance Optimized Carrier Stored Trench Gate Bipolar Transistor (CSTBT) with Low Switching Loss has been proposed. By applying a positive DC voltage to the shield gate, the carrier storage effect is enhanced, the hole blocking capability is improved and the conduction loss is reduced. The DC biased shield gate naturally forms inverse conduction channel to speed up turn-on period. Excess holes are conducted away from the device through the hole path to reduce turn-off loss (Eoff). In addition, other parameters including ON-state voltage (Von), blocking characteristic and short circuit performance are also improved. Simulation results demonstrate that our device exhibits a 35.1% and 35.9% decrease in Eoff and turn-on loss (Eon), respectively, in comparison with the conventional shield CSTBT (Con-SGCSTBT). Additionally, our device achieves a short-circuit duration time that is 2.48 times longer. In high-frequency switching applications, device power loss can be reduced by 35%. It should be noted that the additional DC voltage bias is equivalent to the output voltage of the driving circuit, enabling an effective and feasible approach towards high-performance power electronics applications.

5.
J Colloid Interface Sci ; 507: 74-82, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28780337

RESUMO

A type of ionic liquid functionalized high-aspect-ratio Janus SiO2 nanosheets (IL-Janus nanosheets), which possesses a side terminated by imidazolin salt groups and the opposite side terminated by phenyl groups, was prepared and its emulsification performance was investigated. The surface wettability of ionic liquid functionalized side could be tailored via simple anion exchanging, giving the amphiphilic or totally hydrophobic Janus nanosheets. The influence of several parameters including surface wettability, particle concentration, oil composition, oil-water ratio as well as initial location of the nanosheets on the stability, morphology and type of the Pickering emulsions (O/W or W/O) stabilized by the amphiphilic IL-Janus nanosheets was evaluated. The research results revealed that average emulsion droplets size was decreased with increase of nanosheets concentration below a concentration value but had almost no change beyond the concentration; catastrophic phase inversion phenomenon occurred by varying volume fraction of water phase in the oil-water systems, and transitional phase inversion could be achieved by in-situ exchanging Cl- anion of the IL-Janus nanosheets with phosphomolybdate H2PMo12O40-. The responsiveness of Pickering emulsions towards phosphomolybdic acid is resulted from irreversible anion exchanging of Cl- by H2PMo12O40- and the variation of surface wettability of the nanosheets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...