Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1339510, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449860

RESUMO

African swine fever (ASF) caused by African swine fever virus (ASFV) is a highly mortal and hemorrhagic infectious disease in pigs. Previous studies have indicated that ASFV modulates interferon (IFN) production. In this study, we demonstrated that ASFV pA151R negatively regulated type I IFN production. Ectopic expression of pA151R dramatically inhibited K63-linked polyubiquitination and Ser172 phosphorylation of TANK-binding kinase 1 (TBK1). Mechanically, we demonstrated that E3 ligase TNF receptor-associated factor 6 (TRAF6) participated in the ubiquitination of TBK1 in cGAS-STING signaling pathway. We showed that pA151R interacted with TRAF6 and degraded it through apoptosis pathway, leading to the disruption of TBK1 and TRAF6 interaction. Moreover, we clarified that the amino acids H102, C109, C132, and C135 in pA151R were crucial for pA151R to inhibit type I interferon production. In addition, we verified that overexpression of pA151R facilitated DNA virus Herpes simplex virus 1 (HSV-1) replication by inhibiting IFN-ß production. Importantly, knockdown of pA151R inhibited ASFV replication and enhanced IFN-ß production in porcine alveolar macrophages (PAMs). Our findings will help understand how ASFV escapes host antiviral immune responses and develop effective ASFV vaccines.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Suínos , Ubiquitina-Proteína Ligases , Fator 6 Associado a Receptor de TNF , Ubiquitinação
2.
Virol Sin ; 38(6): 911-921, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37659477

RESUMO

African swine fever (ASF) is originally reported in East Africa as an acute hemorrhagic fever. African swine fever virus (ASFV) is a giant and complex DNA virus with icosahedral structure and encodes a variety of virulence factors to resist host innate immune response. S273R protein (pS273R), as a SUMO-1 specific cysteine protease, can affect viral packaging by cutting polymeric proteins. In this study, we found that pS273R was an important antagonistic viral factor that suppressed cGAS-STING-mediated type I interferon (IFN-I) production. A detailed analysis showed that pS273R inhibited IFN-I production by interacting with interferon regulatory factor 3 (IRF3). Subsequently, we showed that pS273R disrupted the association between TBK1 and IRF3, leading to the repressed IRF3 phosphorylation and dimerization. Deletion and point mutation analysis verified that pS273R impaired IFN-I production independent of its cysteine protease activity. These findings will help us further understand ASFV pathogenesis.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Cisteína Proteases , Interferon Tipo I , Suínos , Animais , Vírus da Febre Suína Africana/genética , Proteínas Serina-Treonina Quinases/genética , Fator Regulador 3 de Interferon , Interferon Tipo I/metabolismo , Cisteína Proteases/metabolismo
3.
Virol Sin ; 38(5): 690-698, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454810

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) has been regarded as a persistent challenge for the swine farms worldwide. microRNAs (miRNAs) play key roles in regulating almost every important biological process, including virus-host interaction. In this study, we found that miR-204 was highly expressed in cells that were not permissive to PRRSV infection compared with cells susceptible to PRRSV infection. Subsequently, we demonstrated that overexpression of miR-204 significantly inhibited PRRSV replication in porcine alveolar macrophages (PAMs). Through bioinformatic analysis, we found that there existed a potential binding site of miR-204 on the 3'UTR of microtubule associated protein 1 light chain 3B (MAP1LC3B, LC3B), a hallmark of autophagy. Applying experiments including luciferase reporter assay and UV cross-linking and immunoprecipitation (CLIP) assay, we demonstrated that miR-204 directly targeted LC3B, thereby downregulating autophagy. Meanwhile, we investigated the interplay between autophagy and PRRSV replication in PAMs, confirming that PRRSV infection induces autophagy, which in turn facilitates viral replication. Overall, we verify that miR-204 suppresses PRRSV replication via inhibiting LC3B-mediated autophagy in PAMs. These findings will provide a novel potential approach for us to develop antiviral therapeutic agents and controlling measures for future PRRSV outbreaks.


Assuntos
MicroRNAs , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/genética , Linhagem Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Replicação Viral , Autofagia/genética
4.
Front Immunol ; 14: 1186916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228597

RESUMO

Cyclic GMP-AMP synthase (cGAS) recognizes viral DNA and synthesizes cyclic GMP-AMP (cGAMP), which activates stimulator of interferon genes (STING/MITA) and downstream mediators to elicit an innate immune response. African swine fever virus (ASFV) proteins can antagonize host immune responses to promote its infection. Here, we identified ASFV protein QP383R as an inhibitor of cGAS. Specifically, we found that overexpression of QP383R suppressed type I interferons (IFNs) activation stimulated by dsDNA and cGAS/STING, resulting in decreased transcription of IFNß and downstream proinflammatory cytokines. In addition, we showed that QP383R interacted directly with cGAS and promoted cGAS palmitoylation. Moreover, we demonstrated that QP383R suppressed DNA binding and cGAS dimerization, thus inhibiting cGAS enzymatic functions and reducing cGAMP production. Finally, the truncation mutation analysis indicated that the 284-383aa of QP383R inhibited IFNß production. Considering these results collectively, we conclude that QP383R can antagonize host innate immune response to ASFV by targeting the core component cGAS in cGAS-STING signaling pathways, an important viral strategy to evade this innate immune sensor.


Assuntos
Vírus da Febre Suína Africana , Interferon Tipo I , Animais , Vírus da Febre Suína Africana/genética , DNA Viral/genética , Interferon Tipo I/metabolismo , Lipoilação , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Suínos , Proteínas Virais/metabolismo
5.
Vet Microbiol ; 269: 109434, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35452863

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) has been recognized as one of the severest epidemics in pigs worldwide. microRNAs (miRNAs) play important roles in a variety of biological processes, including cell differentiation, proliferation and death, as well as viral infections and antiviral immune responses. In this study, we found that miR-142-3p was expressed lower in cells susceptible to PRRSV infection than in cells less or no permissive to PRRSV infection. Subsequently, we showed that overexpression of miR-142-3p remarkably inhibited PRRSV infection in PAMs, while blockage of endogenous miR-142-3p significantly enhanced PRRSV replication. Then, we demonstrated that miR-142-3p directly targeted Ras-related C3 botulinum toxin substrate 1 (Rac1), a member of Rho GTPases family, by using luciferase reporter assay and UV cross-linking and immunoprecipitation (CLIP) assay. Importantly, we verified that miR-142-3p inhibited PRRSV entry into PAMs and accordingly suppressed PRRSV infection by downregulating Rac1 expression. These findings reveal an important role of miR-142-3p in modulating PRRSV infection and provide us with some ideas for developing novel antiviral therapy against PRRSV infection.


Assuntos
MicroRNAs , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Linhagem Celular , Interações Hospedeiro-Patógeno/genética , MicroRNAs/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos , Replicação Viral/fisiologia
6.
Virol Sin ; 37(2): 157-167, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35278697

RESUMO

African swine fever (ASF) is a highly contagious and acute hemorrhagic viral disease with a high mortality approaching 100% in domestic pigs. ASF is an endemic in countries in sub-Saharan Africa. Now, it has been spreading to many countries, especially in Asia and Europe. Due to the fact that there is no commercial vaccine available for ASF to provide sustainable prevention, the disease has spread rapidly worldwide and caused great economic losses in swine industry. The knowledge gap of ASF virus (ASFV) pathogenesis and immune evasion is the main factor to limit the development of safe and effective ASF vaccines. Here, we will summarize the molecular mechanisms of how ASFV interferes with the host innate and adaptive immune responses. An in-depth understanding of ASFV immune evasion strategies will provide us with rational design of ASF vaccines.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Animais , Antivirais , Imunidade , Sus scrofa , Suínos , Replicação Viral
7.
Biomed Environ Sci ; 34(7): 528-539, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34353416

RESUMO

OBJECTIVES: To evaluate the immunogenicity of Mycobacterium intracellulare proteins and determine the cross-reactive proteins between M. intracellulare and M. tuberculosis. METHODS: Protein extracts from M. intracellulare were used to immunize BALB/c mice. The antigens were evaluated using cellular and humoral immunoassays. The common genes between M. intracellular and M. tuberculosis were identified using genome-wide comparative analysis, and cross-reactive proteins were screened using immunoproteome microarrays. RESULTS: Immunization with M. intracellulare proteins induced significantly higher levels of the cytokines interferon-γ (IFN-γ), interleukin-2 (IL-2), interleukin-12 (IL-12), interleukin-6 (IL-6) and immunoglobulins IgG, IgG1, IgM, and IgG2a in mouse serum. Bone marrow-derived macrophages isolated from mice immunized with M. intracellulare antigens displayed significantly lower bacillary loads than those isolated from mice immunized with adjuvants. Whole-genome sequence analysis revealed 396 common genes between M. intracellulare and M. tuberculosis. Microchip hybridization with M. tuberculosis proteins revealed the presence of 478 proteins in the serum of mice immunized with M. intracellulare protein extracts. Sixty common antigens were found using both microchip and genomic comparative analyses. CONCLUSION: This is the advanced study to investigate the immunogenicity of M. intracellulare proteins and the cross-reactive proteins between M. intracellulare and M. tuberculosis. The results revealed the presence of a number of cross-reactive proteins between M. intracellulare and M. tuberculosis. Therefore, this study provides a new way of identifying immunogenic proteins for use in tuberculosis vaccines against both M. intracellulare and M. tuberculosis in future.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Complexo Mycobacterium avium/imunologia , Mycobacterium tuberculosis/imunologia , Animais , Reações Cruzadas , Citocinas/imunologia , Feminino , Genoma Bacteriano , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Macrófagos/imunologia , Camundongos Endogâmicos BALB C , Complexo Mycobacterium avium/genética , Mycobacterium tuberculosis/genética , Vacinas contra a Tuberculose/administração & dosagem , Sequenciamento Completo do Genoma
8.
Front Immunol ; 12: 657071, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995374

RESUMO

In 2006, atypical porcine reproductive and respiratory syndrome (PRRS) caused by a highly pathogenic PRRSV (HP-PRRSV) strain broke out in China. Atypical PRRS is characterized by extremely high fever and high mortality in pigs of all ages. Prostaglandin E2 (PGE2) derived from arachidonic acid through the activation of the rate-limiting enzyme cyclooxygenase type 1/2 (COX-1/2) plays an important role in fever. Here, we showed that HP-PRRSV infection increased PGE2 production in microglia via COX-2 up-regulation depending on the activation of MEK1-ERK1/2-C/EBPß signaling pathways. Then, we screened HP-PRRSV proteins and demonstrated that HP-PRRSV nonstructural protein 2 (NSP2) activated MEK1-ERK1/2-C/EBPß signaling pathways by interacting with 14-3-3ζ to promote COX-2 expression, leading to PGE2 production. Furthermore, we identified that the amino acid residues 500-596 and 658-777 in HP-PRRSV NSP2 were essential to up-regulate COX-2 expression and PGE2 production. Finally, we made mutant HP-PRRS viruses with the deletion of residues 500-596 and/or 658-777, and found out that these viruses had impaired ability to up-regulate COX-2 and PGE2 production in vitro and in vivo. Importantly, pigs infected with the mutant viruses had relieved fever, clinical symptoms, and mortality. These data might help us understand the molecular mechanisms underlying the high fever and provide clues for the development of HP-PRRSV attenuated vaccines.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Transdução de Sinais , Proteínas 14-3-3/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Ciclo-Oxigenase 2/genética , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Sistema de Sinalização das MAP Quinases , Microglia/imunologia , Microglia/metabolismo , Mutação , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Regiões Promotoras Genéticas , Suínos
9.
Vet Microbiol ; 256: 109061, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33836390

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) mainly infects monocyte/macrophage lineage and regulates the production of cytokines to influence host immune responses. Interleukin-6 (IL-6) is originally identified as a B-cell stimulatory factor and has important functions in regulating immune response, hemopoiesis, and inflammation. In this study, we verified that highly pathogenic PRRSV (HP-PRRSV) infection up-regulated IL-6 production in vivo and in vitro. Subsequently, we demonstrated that HP-PRRSV infection activated JNK and NF-κB signaling pathways to enhance IL-6 expression. We further showed that TAK-1 was important in the activation of JNK and NF-κB pathways following HP-PRRSV infection. Moreover, AP-1 and NF-κB binding motifs were found in the cloned porcine IL-6 (pIL-6) promoter, and deletion of these motifs abrogated the activation of pIL-6 promoter by HP-PRRSV, suggesting that IL-6 expression is dependent on AP-1 and NF-κB activation. These findings imply that IL-6 induced by HP-PRRSV infection is dependent on the activation of TAK-1/JNK/AP-1 and TAK-1/NF-κB signaling pathways.


Assuntos
NF-kappa B/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Animais , Citocinas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , NF-kappa B/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Fator de Transcrição AP-1/genética , Regulação para Cima
10.
Int Immunopharmacol ; 93: 107317, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33493866

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus (CoV) that poses economic and public health burdens. Currently, there are no effective antiviral agents against PDCoV. Cryptoporus volvatus often serves as an antimicrobial agent in Traditional Chinese Medicines. This study aimed to evaluate the antiviral activities of ergosterol peroxide (EP) from C. volvatus against PDCoV infection. The inhibitory activity of EP against PDCoV was assessed by using virus titration and performing Quantitative Reverse transcription PCR (RT-qPCR), Western blotting and immunofluorescence assays in LLC-PK1 cells. The mechanism of EP against PDCoV was analyzed by flow cytometry, RT-qPCR and Western blotting. We found that EP treatment inhibited PDCoV infection in LLC-PK1 cells in a dose-dependent manner. Subsequently, we demonstrated that EP blocked virus attachment and entry using RT-qPCR. Time-of-addition assays indicated that EP mainly exerted its inhibitory effect at the early and middle stages in the PDCoV replication cycle. EP also inactivated PDCoV infectivity directly as well as suppressed PDCoV-induced apoptosis. Furthermore, EP treatment decreased the phosphorylation of IκBα and p38 MAPK induced by PDCoV infection as well as the mRNA levels of cytokines (IL-1ß, IL-6, IL-12, TNF-α, IFN-α, IFN-ß, Mx1 and PKR). These results imply that EP can inhibit PDCoV infection and regulate host immune responses by downregulating the activation of the NF-κB and p38/MAPK signaling pathways in vitro. EP can be used as a potential candidate for the development of a new anti-PDCoV therapy.


Assuntos
Antivirais/farmacologia , Deltacoronavirus/efeitos dos fármacos , Deltacoronavirus/imunologia , Ergosterol/análogos & derivados , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Ergosterol/química , Ergosterol/farmacologia , Proteínas I-kappa B/metabolismo , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Células LLC-PK1 , Polyporaceae , Suínos , Doenças dos Suínos , Fator de Transcrição RelA/metabolismo , Vírion/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
11.
Front Microbiol ; 12: 804264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975824

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is one of the most important diseases in pigs, leading to significant economic losses in the swine industry worldwide. MicroRNAs (miRNAs) are small single-stranded non-coding RNAs involved in regulating gene expressions at the post-transcriptional levels. A variety of host miRNAs are dysregulated and exploited by PRRSV to escape host antiviral surveillance and help virus infection. In addition, PRRSV might encode miRNAs. In this review, we will summarize current progress on how PRRSV utilizes miRNAs for immune evasions. Increasing knowledge of the role of miRNAs in immune evasion will improve our understanding of PRRSV pathogenesis and help us develop new treatments for PRRSV-associated diseases.

12.
Virology ; 546: 79-87, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452419

RESUMO

In a previous study, we have shown that highly-pathogenic PRRSV (HP-PRRSV) nonstructural protein 4 (nsp4) antagonizes type I IFN expression induced by poly(I:C). Here, we demonstrated that the mutation of Aspartic acid 185 (Asp185) impaired the ability of nsp4 to inhibit IFN-I production induced by poly(I:C). Subsequently, we verified that all the mutants at the residue 185, regardless of amino acid size (including Cys and Ser) and charge (including Glu and Lys), impaired nsp4 catalytic activity. However, when Asp185 in nsp4 was replaced by a similar structure amino acid Asparagine 185 (Asn185), nsp4 stayed but with a decreased protease activity. Importantly, the recombinant virus with Asn185 mutation in HP-PRRSV-nsp4 exhibited slower replication rate and higher ability to induce IFN-I expression compared with wild-type (wt) HP-PRRSV.


Assuntos
Ácido Aspártico/metabolismo , Interferon beta/metabolismo , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Animais , Interações Hospedeiro-Patógeno , Interferon beta/genética , Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/química , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Suínos , Proteínas não Estruturais Virais/genética , Virulência
14.
Viruses ; 12(2)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075207

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is prevalent throughout the world and has caused great economic losses to the swine industry. Nonstructural protein 10 (nsp10) is a superfamily 1 helicase participating in multiple processes of virus replication and one of the three most conserved proteins in nidoviruses. Here we report three high resolution crystal structures of highly pathogenic PRRSV nsp10. PRRSV nsp10 has multiple domains, including an N-terminal zinc-binding domain (ZBD), a ß-barrel domain, a helicase core with two RecA-like domains, and a C-terminal domain (CTD). The CTD adopts a novel fold and is required for the overall structure and enzymatic activities. Although each domain except the CTD aligns well with its homologs, PRRSV nsp10 adopts an unexpected extended overall structure in crystals and solution. Moreover, structural and functional analyses of PRRSV nsp10 versus its closest homolog, equine arteritis virus nsp10, suggest that DNA binding might induce a profound conformational change of PRRSV nsp10 to exert functions, thus shedding light on the mechanisms of activity regulation of this helicase.


Assuntos
DNA Helicases/química , Vírus da Síndrome Respiratória e Reprodutiva Suína/enzimologia , Proteínas não Estruturais Virais/química , Cristalização , DNA Helicases/genética , Equartevirus/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Estrutura Secundária de Proteína , Proteínas não Estruturais Virais/genética , Replicação Viral
15.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31413135

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is widely prevalent in pigs, resulting in significant economic losses worldwide. A compelling impact of PRRSV infection is severe pneumonia. In the present study, we found that interleukin-17 (IL-17) was upregulated by PRRSV infection. Subsequently, we demonstrated that PI3K and p38MAPK signaling pathways were essential for PRRSV-induced IL-17 production as addition of phosphatidylinositol 3-kinase (PI3K) and p38MAPK inhibitors dramatically reduced IL-17 production. Furthermore, we show here that deleting the C/EBPß and CREB binding motif in porcine IL-17 promoter abrogated its activation and that knockdown of C/EBPß and CREB remarkably impaired PRRSV-induced IL-17 production, suggesting that IL-17 expression was dependent on C/EBPß and CREB. More specifically, we demonstrate that PRRSV nonstructural protein 11 (nsp11) induced IL-17 production, which was also dependent on PI3K-p38MAPK-C/EBPß/CREB pathways. We then show that Ser74 and Phe76 amino acids were essential for nsp11 to induce IL-17 production and viral rescue. In addition, IRAK1 was required for nsp11 to activate PI3K and enhance IL-17 expression by interacting with each other. Importantly, we demonstrate that PI3K inhibitor significantly suppressed IL-17 production and lung inflammation caused by HP-PRRSV in vivo, implicating that higher IL-17 level induced by HP-PRRSV might be associated with severe lung inflammation. These findings provide new insights onto the molecular mechanisms of the PRRSV-induced IL-17 production and help us further understand the pathogenesis of PRRSV infection.IMPORTANCE Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) associated with severe pneumonia has been one of the most important viral pathogens in pigs. IL-17 is a proinflammatory cytokine that might be associated with the strong inflammation caused by PRRSV. Therefore, we sought to determine whether PRRSV infection affects IL-17 expression, and if so, determine this might partially explain the underlying mechanisms for the strong inflammation in HP-PRRSV-infected pigs, especially in lungs. Here, we show that PRRSV significantly induced IL-17 expression, and we subsequently dissected the molecular mechanisms about how PRRSV regulated IL-17 production. Furthermore, we show that Ser74 and Phe76 in nsp11 were indispensable for IL-17 production and viral replication. Importantly, we demonstrated that PI3K inhibitor impaired IL-17 production and alleviated lung inflammation caused by HP-PRRSV infection. Our findings will help us for a better understanding of PRRSV pathogenesis.


Assuntos
Endorribonucleases/metabolismo , Interleucina-17/metabolismo , Pneumonia/patologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Transdução de Sinais , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Endorribonucleases/genética , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-17/genética , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Pneumonia/metabolismo , Pneumonia/virologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/patologia , Suínos , Proteínas não Estruturais Virais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Cancer Lett ; 462: 12-22, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31352079

RESUMO

High levels of IL-10 expression in Epstein-Barr virus (EBV) associated tumors have been reported and it is likely to be important for maintaining EBV latency and EBV-associated tumors. The switch from the latent form of EBV to the lytic form in tumor cells can lead to tumor cell lysis. Here, we found that knockdown of IL-10 induced EBV lytic replication. Subsequently, we demonstrated that IL-10 knockdown activated BZLF1 promoter through PI3K-p38 MAPK-NF-κB signaling pathway. Interestingly, we verified that VEGF-A was required for IL-10 knockdown to activate PI3K signaling and the accompanying EBV lytic induction. Exogenous recombinant human VEGF-A induced PI3K activation and EBV lytic infection, and inhibition of VEGF-A signaling prevented the PI3K/AKT phosphorylation and EBV reactivation responded to IL-10 knockdown. Most importantly, IL-10 knockdown synergized with chemotherapeutic agent Doxorubicin to kill EBV associated tumor cells in vitro and repress EBV-positive tumor growth in vivo. Our results suggest that inhibition of IL-10 has the potential to serve as a new supplemental strategy for the treatment of EBV-associated tumors.


Assuntos
Doxorrubicina/farmacologia , Infecções por Vírus Epstein-Barr/complicações , Interleucina-10/antagonistas & inibidores , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Ativação Viral/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/fisiologia , Humanos , Interleucina-10/genética , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/virologia , Células Tumorais Cultivadas , Ativação Viral/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
J Gen Virol ; 99(12): 1671-1680, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30382935

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is one of the most important diseases in pigs. MicroRNAs (miRNAs) have emerged as an important regulator of virus-host cell interactions and miR-30c has been found to facilitate PRRSV replication. Here, we found that the interferon-alpha/beta receptor beta chain (IFNAR2) was down-regulated, while miR-30c was up-regulated during HV (a highly pathogenic type 2 PRRSV strain) and CH-1a (a classic type 2 PRRSV strain) infection. Subsequently, using bioinformatics analysis, we predicted that the IFNAR2 was targeted by miR-30c. A luciferase assay verified that the 3' UTR of IFNAR2 was targeted by miR-30c, as a mutation on either the target sequence or the miR-30c seed sequence reversed the luciferase activity. In addition, miR-30c and IFNAR2 mRNA were physically co-localized in RNA-induced silencing complex (RISC). Importantly, we showed that miR-30c also impaired the induction of IFN-stimulated genes (ISGs) by targeting IFNAR2. Our findings further reveal the mechanism of miR-30c promoting PRRSV replication.


Assuntos
Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , MicroRNAs/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/crescimento & desenvolvimento , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Receptor de Interferon alfa e beta/antagonistas & inibidores , Animais , Células Cultivadas , Regulação da Expressão Gênica , Macrófagos Alveolares/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Suínos , Doenças dos Suínos
18.
Vet Microbiol ; 227: 82-89, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30473357

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) infection which caused severe reproductive failure and respiratory disorders in swine is accompanied with severe nervous symptoms. Our previous studies demonstrated that microglia, the resident innate immune cells in central nervous system (CNS), could support PRRSV infection and replication in vitro. And PRRSV infection led to the increased expressions of large amounts of proinflammatory cytokines and chemokines which contributed to neuropathogenesis of PRRSV. Interleukin-1ß (IL-1ß) is one of the increased proinflammatory cytokines, which possesses diverse functions in immune response upon virus infection, including activation of innate immune and modulation of adaptive immune responses. Importantly, considerable evidences indicated that 1L-1ß is involved in neuronal injury. Here, we demonstrated that PRRSV infection up-regulated IL-1ß expression at both the mRNA and protein levels in microglia in a dose-dependent manner. Myeloid differentiation primary response gene 88 (MyD88), extracellular signal-regulated kinase1/2 (ERK) and activator protein 1 (AP-1) were involved in PRRSV induced IL-1ß production in microglia. Moreover, NOD-like receptor protein 3 (NLRP3) inflammasome is activated by PRRSV in microglia, which is required for IL-1ß secretion. Taken together, our data indicated that PRRSV infection could induce IL-1ß up-regulation, which was likely mediated by MyD88/ERK/AP-1 and NLRP3 inflammasome. These findings will provide new insights into the molecular mechanisms of IL-1ß production and some implications for neuropathogenesis of PRRSV.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/genética , Interleucina-1beta/genética , Microglia/imunologia , Microglia/virologia , Fator 88 de Diferenciação Mieloide/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Fator de Transcrição AP-1/genética , Animais , Quimiocinas/genética , Quimiocinas/imunologia , Citocinas/genética , Citocinas/imunologia , MAP Quinases Reguladas por Sinal Extracelular/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamassomos/genética , Inflamassomos/imunologia , Interleucina-1beta/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosforilação , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Suínos , Fator de Transcrição AP-1/imunologia , Fator de Transcrição AP-1/metabolismo , Regulação para Cima
19.
J Virol ; 92(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29070692

RESUMO

Heartland virus (HRTV) is an emerging human pathogen that belongs to the newly defined family Phenuiviridae, order Bunyavirales Gn and Gc are two viral surface glycoproteins encoded by the M segment and are required for early events during infection. HRTV delivers its genome into the cytoplasm by fusion of the viral envelope and endosomal membranes under low-pH conditions. Here, we describe the crystal structure of HRTV Gc in its postfusion conformation. The structure shows that Gc displays a typical class II fusion protein conformation, and the overall structure is identical to severe fever with thrombocytopenia syndrome virus (SFTSV) Gc, which also belongs to the Phenuiviridae family. However, our structural analysis indicates that the hantavirus Gc presents distinct features in the aspects of subdomain orientation, N-linked glycosylation, the interaction pattern between protomers, and the fusion loop conformation. This suggests their family-specific subunit arrangement during the fusogenic process and supports the recent taxonomic revision of bunyaviruses. Our results provide insights into the comprehensive comparison of class II membrane fusion proteins in two bunyavirus families, yielding valuable information for treatments against these human pathogens.IMPORTANCE HRTV is an insect-borne virus found in America that can infect humans. It belongs to the newly defined family Phenuiviridae, order Bunyavirales HRTV contains three single-stranded RNA segments (L, M, and S). The M segment of the virus encodes a polyprotein precursor that is cleaved into two glycoproteins, Gn and Gc. Gc is a fusion protein facilitating virus entry into host cells. Here, we report the crystal structure of the HRTV Gc protein. The structure displays a typical class II fusion protein conformation. Comparison of HRTV Gc with a recently solved structure of another bunyavirus Gc revealed that these Gc structures display a newly defined family specificity, supporting the recent International Committee on Taxonomy of Viruses reclassification of the bunyaviruses. Our results expand the knowledge of bunyavirus fusion proteins and help us to understand bunyavirus characterizations. This study provides useful information to improve protection against and therapies for bunyavirus infections.


Assuntos
Glicoproteínas/química , Phlebovirus/química , Vírus de RNA/química , Proteínas do Envelope Viral/química , Proteínas Virais de Fusão/química , Bunyaviridae/química , Cristalização , Cristalografia por Raios X , Glicosilação , Orthohantavírus/química , Orthohantavírus/classificação , Phlebovirus/classificação , Phlebovirus/genética , Conformação Proteica , Domínios Proteicos , Vírus de RNA/classificação , Vírus de RNA/genética , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus
20.
Proc Natl Acad Sci U S A ; 114(36): E7564-E7573, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827346

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) and Rift Valley fever virus (RVFV) are two arthropod-borne phleboviruses in the Bunyaviridae family, which cause severe illness in humans and animals. Glycoprotein N (Gn) is one of the envelope proteins on the virus surface and is a major antigenic component. Despite its importance for virus entry and fusion, the molecular features of the phleboviruse Gn were unknown. Here, we present the crystal structures of the Gn head domain from both SFTSV and RVFV, which display a similar compact triangular shape overall, while the three subdomains (domains I, II, and III) making up the Gn head display different arrangements. Ten cysteines in the Gn stem region are conserved among phleboviruses, four of which are responsible for Gn dimerization, as revealed in this study, and they are highly conserved for all members in Bunyaviridae Therefore, we propose an anchoring mode on the viral surface. The complex structure of the SFTSV Gn head and human neutralizing antibody MAb 4-5 reveals that helices α6 in subdomain III is the key component for neutralization. Importantly, the structure indicates that domain III is an ideal region recognized by specific neutralizing antibodies, while domain II is probably recognized by broadly neutralizing antibodies. Collectively, Gn is a desirable vaccine target, and our data provide a molecular basis for the rational design of vaccines against the diseases caused by phleboviruses and a model for bunyavirus Gn embedding on the viral surface.


Assuntos
Anticorpos Neutralizantes/metabolismo , Epitopos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Phlebovirus/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Animais , Infecções por Bunyaviridae/virologia , Linhagem Celular , Cristalografia por Raios X , Epitopos/química , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/metabolismo , Células Sf9 , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...