Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 32, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38175237

RESUMO

Black soldier fly larvae (BSFL) are considered a sustainable ingredient in livestock feed. However, addressing issues related to feed substrate and intestinal microbiota is essential to ensure optimal larval development. The aim of this study was to assess and elucidate the contribution of substrate nutrients and intestinal microbes to protein and fat synthesis in BSFL. The results showed that larvae that were fed high-quality feed (chicken feed) had high fat biomass, while larvae that were fed medium-quality feed (wheat bran) had high protein biomass. These results indicate that the original nutritional content of the feed cannot fully explain larval growth and nutrient utilization. However, the phenomenon could be explained by the functional metabolism of intestinal microbes. Chicken feed enhanced the fatty acid metabolism of middle intestine microorganisms in larvae within 0-7 days. This process facilitated larval fat synthesis. In contrast, wheat bran stimulated the amino acid metabolism in posterior intestine microorganisms in larvae within 4-7 days, leading to better protein synthesis. The findings of this study highlight the importance of the microbial functional potential in the intestine in regulating protein and lipid synthesis in BSFL, which is also influenced by the type of feed. In conclusion, our study suggests that both feed type and intestinal microbes play a crucial role in efficiently converting organic waste into high-quality insect protein and fat. Additionally, a mixed culture of chicken feed and wheat bran was found to be effective in promoting larval biomass while reducing feed costs. KEY POINTS: • Intestinal microbes explain BSFL growth better than feed substrates. • Chicken feed promotes fatty acid synthesis in the middle intestine • Wheat bran promotes amino acid synthesis in the posterior intestine.


Assuntos
Microbiota , Animais , Larva , Galinhas , Fibras na Dieta , Intestinos , Aminoácidos , Ácidos Graxos
2.
Plant Biotechnol J ; 21(11): 2322-2332, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37475199

RESUMO

A complete and genetically stable male sterile line with high outcrossing rate is a prerequisite for the development of commercial hybrid soybean. It was reported in the last century that the soybean male sterile ms2 mutant has the highest record with seed set. Here we report the cloning and characterization of the MS2 gene in soybean, which encodes a protein that is specifically expressed in the anther. MS2 functions in the tapetum and microspore by directly regulating genes involved in the biosynthesis of secondary metabolites and the lipid metabolism, which is essential for the formation of microspore cell wall. Through comparison of the field performance with the widely used male sterile mutants in the same genetic background, we demonstrated that the ms2 mutant conducts the best in outcrossing rate and makes it an ideal tool in building a cost-effective hybrid system for soybean.


Assuntos
Glycine max , Infertilidade das Plantas , Glycine max/genética , Glycine max/metabolismo , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Melhoramento Vegetal , Fertilidade/genética , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...