Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992056

RESUMO

The passive optical network (PON) is widely used in optical fiber communication thanks to its low cost and low resource consumption. However, the passiveness brings about a critical problem that it requires manual work to identify the topology structure, which is costly and prone to bringing noise to the topology logs. In this paper, we provide a base solution firstly introducing neural networks for such problems, and based on that solution we propose a complete methodology (PT-Predictor) for predicting PON topology through representation learning on its optical power data. Specifically, we design useful model ensembles (GCE-Scorer) to extract the features of optical power with noise-tolerant training techniques integrated. We further implement a data-based aggregation algorithm (MaxMeanVoter) and a novel Transformer-based voter (TransVoter) to predict the topology. Compared with previous model-free methods, PT-Predictor is able to improve prediction accuracy by 23.1% in scenarios where data provided by telecom operators is sufficient, and by 14.8% in scenarios where data is temporarily insufficient. Besides, we identify a class of scenarios where PON topology does not follow a strict tree structure, and thus topology prediction cannot be effectively performed by relying on optical power data alone, which will be studied in our future work.

2.
Bioorg Med Chem ; 41: 116205, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34000509

RESUMO

The ability to predict chemical structure from DNA sequence has to date been a necessary cornerstone of DNA-encoded library technology. DNA-encoded libraries (DELs) are typically screened by immobilized affinity selection and enriched library members are identified by counting the number of times an individual compound's sequence is observed in the resultant dataset. Those with high signal reads (DEL hits) are subsequently followed up through off-DNA synthesis of the predicted small molecule structures. However, hits followed-up in this manner often fail to translate to confirmed ligands. To address this low conversion rate of DEL hits to off-DNA ligands, we have developed an approach that eliminates the reliance on chemical structure prediction from DNA sequence. Here we describe our method of combining non-combinatorial resynthesis on-DNA following library procedures as a rapid means to assess the probable molecules attached to the DNA barcode. Furthermore, we apply our Bead-Assisted Ligand Isolation Mass Spectrometry (BALI-MS) technique to identify the true binders found within the mixtures of on-DNA synthesis products. Finally, we describe a Normalized Enrichment (NE) metric that allows for the quantitative assessment of affinity selection in these studies. We exemplify how this combined approach enables the identification of putative hit matter against a clinically relevant therapeutic target bisphosphoglycerate mutase, BPGM.


Assuntos
DNA/química , Descoberta de Drogas , Biblioteca Gênica , Espectrometria de Massas/métodos , Técnicas de Química Combinatória , Ligantes , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química
3.
Nat Chem Biol ; 17(2): 152-160, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33199914

RESUMO

Heterobifunctional chimeric degraders are a class of ligands that recruit target proteins to E3 ubiquitin ligases to drive compound-dependent protein degradation. Advancing from initial chemical tools, protein degraders represent a mechanism of growing interest in drug discovery. Critical to the mechanism of action is the formation of a ternary complex between the target, degrader and E3 ligase to promote ubiquitination and subsequent degradation. However, limited insights into ternary complex structures exist, including a near absence of studies on one of the most widely co-opted E3s, cellular inhibitor of apoptosis 1 (cIAP1). In this work, we use a combination of biochemical, biophysical and structural studies to characterize degrader-mediated ternary complexes of Bruton's tyrosine kinase and cIAP1. Our results reveal new insights from unique ternary complex structures and show that increased ternary complex stability or rigidity need not always correlate with increased degradation efficiency.


Assuntos
Tirosina Quinase da Agamaglobulinemia/genética , Proteínas Inibidoras de Apoptose/genética , Cromatografia em Gel , Reagentes de Ligações Cruzadas , Humanos , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteólise , Espectrometria de Massas por Ionização por Electrospray , Ubiquitina-Proteína Ligases , Ubiquitinação , Difração de Raios X
4.
J Med Chem ; 64(1): 326-342, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356244

RESUMO

Sickle cell disease (SCD) is a genetic disorder caused by a single point mutation (ß6 Glu → Val) on the ß-chain of adult hemoglobin (HbA) that results in sickled hemoglobin (HbS). In the deoxygenated state, polymerization of HbS leads to sickling of red blood cells (RBC). Several downstream consequences of polymerization and RBC sickling include vaso-occlusion, hemolytic anemia, and stroke. We report the design of a noncovalent modulator of HbS, clinical candidate PF-07059013 (23). The seminal hit molecule was discovered by virtual screening and confirmed through a series of biochemical and biophysical studies. After a significant optimization effort, we arrived at 23, a compound that specifically binds to Hb with nanomolar affinity and displays strong partitioning into RBCs. In a 2-week multiple dose study using Townes SCD mice, 23 showed a 37.8% (±9.0%) reduction in sickling compared to vehicle treated mice. 23 (PF-07059013) has advanced to phase 1 clinical trials.


Assuntos
Anemia Falciforme/tratamento farmacológico , Hemoglobina A/efeitos dos fármacos , Hemoglobina Falciforme/efeitos dos fármacos , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Animais , Eritrócitos/metabolismo , Camundongos , Oxigênio/metabolismo , Quinolinas/química
5.
Nat Commun ; 10(1): 2210, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101807

RESUMO

The core machinery for de novo biosynthesis of iron-sulfur clusters (ISC), located in the mitochondria matrix, is a five-protein complex containing the cysteine desulfurase NFS1 that is activated by frataxin (FXN), scaffold protein ISCU, accessory protein ISD11, and acyl-carrier protein ACP. Deficiency in FXN leads to the loss-of-function neurodegenerative disorder Friedreich's ataxia (FRDA). Here the 3.2 Å resolution cryo-electron microscopy structure of the FXN-bound active human complex, containing two copies of the NFS1-ISD11-ACP-ISCU-FXN hetero-pentamer, delineates the interactions of FXN with other component proteins of the complex. FXN binds at the interface of two NFS1 and one ISCU subunits, modifying the local environment of a bound zinc ion that would otherwise inhibit NFS1 activity in complexes without FXN. Our structure reveals how FXN facilitates ISC production through stabilizing key loop conformations of NFS1 and ISCU at the protein-protein interfaces, and suggests how FRDA clinical mutations affect complex formation and FXN activation.


Assuntos
Liases de Carbono-Enxofre/ultraestrutura , Ataxia de Friedreich/patologia , Proteínas de Ligação ao Ferro/ultraestrutura , Proteínas Ferro-Enxofre/ultraestrutura , Mitocôndrias/ultraestrutura , Liases de Carbono-Enxofre/isolamento & purificação , Liases de Carbono-Enxofre/metabolismo , Microscopia Crioeletrônica , Ataxia de Friedreich/genética , Ferro/metabolismo , Proteínas de Ligação ao Ferro/isolamento & purificação , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/isolamento & purificação , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Modelos Moleculares , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Enxofre/metabolismo , Zinco/metabolismo , Frataxina
6.
Medchemcomm ; 10(2): 209-220, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30881609

RESUMO

The mitochondrial acyl carrier protein (human ACPM, yeast Acp1) is an essential mitochondrial protein. Through binding of nascent acyl chains on the serine (S112)-bound 4'-phosphopantetheine (4'-PP) cofactor, ACPM is involved in mitochondrial fatty acid synthesis and lipoic acid biogenesis. Recently, yeast Acp1 was found to interact with several mitochondrial complexes, including the iron-sulfur (Fe-S) cluster biosynthesis and respiratory complexes, via the binding to LYRM proteins, a family of proteins involved in assembly/stability of complexes. Importantly, the interaction of LYRM proteins with Acp1 was shown to be essential in maintaining integrity of mitochondrial complexes. In human, recent structures show that ACPM binding to LYRM proteins involves acyl chains attached to the 4'-PP cofactor. Here, we performed an detailed characterization of the mitochondrial interactome of human ACPM by mass spectrometry (MS) and demonstrate the crucial role of the 4'-PP cofactor in most of ACPM interactions. Specifically, we show that ACPM interacts with endogenous Fe-S cluster complex components through binding of the LYRM protein ISD11/LYRM4. Using knockdown experiments, we further determine that ACPM is essential for the stability of mitochondrial respiratory complexes I, II and III, as well as the Fe-S cluster biosynthesis complex. Finally, using native MS and a top-down MS approach, we show that C14, C16 and C18 3-keto-acyl chains on ACPM are implicated in binding to ISD11 through analysis of the recombinant ACPM-ISD11 complex. Taken together, our data provide novel understanding of the role of 4'-PP- and long acyl chains-dependent interactions in human ACPM function.

7.
Bioconjug Chem ; 30(1): 200-209, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30543418

RESUMO

A potent class of DNA-damaging agents, natural product bis-intercalator depsipeptides (NPBIDs), was evaluated as ultrapotent payloads for use in antibody-drug conjugates (ADCs). Detailed investigation of potency (both in cells and via biophysical characterization of DNA binding), chemical tractability, and in vitro and in vivo stability of the compounds in this class eliminated a number of potential candidates, greatly reducing the complexity and resources required for conjugate preparation and evaluation. This effort yielded a potent, stable, and efficacious ADC, PF-06888667, consisting of the bis-intercalator, SW-163D, conjugated via an N-acetyl-lysine-valine-citrulline- p-aminobenzyl alcohol- N, N-dimethylethylenediamine (AcLysValCit-PABC-DMAE) linker to an engineered variant of the anti-Her2 mAb, trastuzumab, catalyzed by transglutaminase.


Assuntos
Produtos Biológicos/química , Depsipeptídeos/química , Imunoconjugados/química , Substâncias Intercalantes/química , Animais , Antineoplásicos Imunológicos/química , Linhagem Celular Tumoral , DNA/química , Depsipeptídeos/sangue , Depsipeptídeos/farmacocinética , Equinomicina/química , Genes erbB-2 , Meia-Vida , Xenoenxertos , Humanos , Camundongos , Trastuzumab/química
8.
Proc Natl Acad Sci U S A ; 115(31): E7285-E7292, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012605

RESUMO

Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that simultaneously bind to a target protein and an E3 ligase, thereby leading to ubiquitination and subsequent degradation of the target. They present an exciting opportunity to modulate proteins in a manner independent of enzymatic or signaling activity. As such, they have recently emerged as an attractive mechanism to explore previously "undruggable" targets. Despite this interest, fundamental questions remain regarding the parameters most critical for achieving potency and selectivity. Here we employ a series of biochemical and cellular techniques to investigate requirements for efficient knockdown of Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase essential for B cell maturation. Members of an 11-compound PROTAC library were investigated for their ability to form binary and ternary complexes with BTK and cereblon (CRBN, an E3 ligase component). Results were extended to measure effects on BTK-CRBN cooperative interactions as well as in vitro and in vivo BTK degradation. Our data show that alleviation of steric clashes between BTK and CRBN by modulating PROTAC linker length within this chemical series allows potent BTK degradation in the absence of thermodynamic cooperativity.


Assuntos
Proteínas Tirosina Quinases/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Tirosina Quinase da Agamaglobulinemia , Animais , Células Cultivadas , Ligantes , Poliubiquitina/metabolismo , Ratos , Termodinâmica
9.
J Am Chem Soc ; 140(21): 6596-6603, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29668265

RESUMO

CRISPR-Cas RNA-guided endonucleases hold great promise for disrupting or correcting genomic sequences through site-specific DNA cleavage and repair. However, the lack of methods for cell- and tissue-selective delivery currently limits both research and clinical uses of these enzymes. We report the design and in vitro evaluation of S. pyogenes Cas9 proteins harboring asialoglycoprotein receptor ligands (ASGPrL). In particular, we demonstrate that the resulting ribonucleoproteins (Cas9-ASGPrL RNP) can be engineered to be preferentially internalized into cells expressing the corresponding receptor on their surface. Uptake of such fluorescently labeled proteins in liver-derived cell lines HEPG2 (ASGPr+) and SKHEP (control; diminished ASGPr) was studied by live cell imaging and demonstrates increased accumulation of Cas9-ASGPrL RNP in HEPG2 cells as a result of effective ASGPr-mediated endocytosis. When uptake occurred in the presence of a peptide with endosomolytic properties, we observed receptor-facilitated and cell-type specific gene editing that did not rely on electroporation or the use of transfection reagents. Overall, these in vitro results validate the receptor-mediated delivery of genome-editing enzymes as an approach for cell-selective gene editing and provide a framework for future potential applications to hepatoselective gene editing in vivo.


Assuntos
Sistemas CRISPR-Cas , Endonucleases/metabolismo , Edição de Genes , Linhagem Celular Tumoral , Endonucleases/genética , Células Hep G2 , Humanos , Estrutura Molecular , Engenharia de Proteínas
10.
ACS Chem Biol ; 12(8): 2015-2020, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28718624

RESUMO

Irreversible enzyme inhibitors and covalent chemical biology probes often utilize the reaction of a protein cysteine residue with an appropriately positioned electrophile (e.g., acrylamide) on the ligand template. However, cysteine residues are not always available for site-specific protein labeling, and therefore new approaches are needed to expand the toolkit of appropriate electrophiles ("warheads") that target alternative amino acids. We previously described the rational targeting of tyrosine residues in the active site of a protein (the mRNA decapping scavenger enzyme, DcpS) using inhibitors armed with a sulfonyl fluoride electrophile. These inhibitors subsequently enabled the development of clickable probe technology to measure drug-target occupancy in live cells. Here we describe a fluorosulfate-containing inhibitor (aryl fluorosulfate probe (FS-p1)) with excellent chemical and metabolic stability that reacts selectively with a noncatalytic serine residue in the same active site of DcpS as confirmed by peptide mapping experiments. Our results suggest that noncatalytic serine targeting using fluorosulfate electrophilic warheads could be a suitable strategy for the development of covalent inhibitor drugs and chemical probes.


Assuntos
Inibidores Enzimáticos/química , Fluoretos/química , Serina/química , Ácidos Sulfúricos/química , Animais , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Humanos
11.
Sci Rep ; 6: 26071, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27184415

RESUMO

IL-17A is a pro-inflammatory cytokine that has been implicated in autoimmune and inflammatory diseases. Monoclonal antibodies inhibiting IL-17A signaling have demonstrated remarkable efficacy, but an oral therapy is still lacking. A high affinity IL-17A peptide antagonist (HAP) of 15 residues was identified through phage-display screening followed by saturation mutagenesis optimization and amino acid substitutions. HAP binds specifically to IL-17A and inhibits the interaction of the cytokine with its receptor, IL-17RA. Tested in primary human cells, HAP blocked the production of multiple inflammatory cytokines. Crystal structure studies revealed that two HAP molecules bind to one IL-17A dimer symmetrically. The N-terminal portions of HAP form a ß-strand that inserts between two IL-17A monomers while the C-terminal section forms an α helix that directly blocks IL-17RA from binding to the same region of IL-17A. This mode of inhibition suggests opportunities for developing peptide antagonists against this challenging target.


Assuntos
Inibidores Enzimáticos/metabolismo , Interleucina-17/antagonistas & inibidores , Peptídeos/metabolismo , Receptores de Interleucina-17/metabolismo , Substituição de Aminoácidos , Células Cultivadas , Cristalografia por Raios X , Inibidores Enzimáticos/isolamento & purificação , Humanos , Interleucina-17/química , Programas de Rastreamento , Modelos Moleculares , Mutagênese , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/isolamento & purificação , Ligação Proteica , Conformação Proteica
12.
J Biol Chem ; 289(52): 36018-30, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25336647

RESUMO

Cystathionine ß-synthase (CBS) is a key enzyme in sulfur metabolism, and its inherited deficiency causes homocystinuria. Mammalian CBS is modulated by the binding of S-adenosyl-l-methionine (AdoMet) to its regulatory domain, which activates its catalytic domain. To investigate the underlying mechanism, we performed x-ray crystallography, mutagenesis, and mass spectrometry (MS) on human CBS. The 1.7 Å structure of a AdoMet-bound CBS regulatory domain shows one AdoMet molecule per monomer, at the interface between two constituent modules (CBS-1, CBS-2). AdoMet binding is accompanied by a reorientation between the two modules, relative to the AdoMet-free basal state, to form interactions with AdoMet via residues verified by mutagenesis to be important for AdoMet binding (Phe(443), Asp(444), Gln(445), and Asp(538)) and for AdoMet-driven inter-domain communication (Phe(443), Asp(538)). The observed structural change is further supported by ion mobility MS, showing that as-purified CBS exists in two conformational populations, which converged to one in the presence of AdoMet. We therefore propose that AdoMet-induced conformational change alters the interface and arrangement between the catalytic and regulatory domains within the CBS oligomer, thereby increasing the accessibility of the enzyme active site for catalysis.


Assuntos
Cistationina beta-Sintase/química , S-Adenosilmetionina/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína
13.
Anal Bioanal Chem ; 406(24): 5785-94, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25064599

RESUMO

Cyclosporin is a family of neutral cyclic undecapeptides widely used for the prevention of organ transplant rejection and controlling viral infection. The equilibrium of conformations assumed by cyclosporin A in response to the solvent environment is thought to play a critical role in enabling good membrane penetration, which improves upon shielding the polarity of the molecule through forming intramolecular hydrogen bonds. However, the distribution of structures and their internal hydrogen bond geometries have not been elucidated thus far across the series of cyclosporins. Herein, we elucidate the conformational heterogeneity of cyclosporins using a set of analytical approaches including ion mobility mass spectrometry, hydrogen-deuterium exchange, and molecular dynamics simulation. Ion mobility measurements reveal a specific conformational distribution for each cyclosporin derivative in a structure-dependent manner. In general, we observe that the more compact conformer is associated with a greater frequency of intramolecular hydrogen bonds. Cyclosporin A is populated by structures with an extensive hydrogen bond network that is lacking in cyclosporin H, which is composed predominantly of a single compact conformation. The slower dynamics of cyclosporin H backbone is also consistent with the lack of hydrogen bonds. Furthermore, we find a strong correlation between the steric bulk of the side chain at position 2 of cyclosporin and the distribution of conformers due to differential accommodation of side chains within the macrocycle, and also report a wide range of conformational dynamics in solution.


Assuntos
Ciclosporinas/química , Ligação de Hidrogênio , Espectrometria de Massas , Conformação Molecular
14.
J Biol Chem ; 288(50): 35904-12, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24187138

RESUMO

AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that senses and governs changes in the cellular energy balance represented by concentrations of AMP, ADP, and ATP. Each of its three chains (α, ß, and γ) exists as either two or three subtypes, theoretically allowing up to 12 different forms of the complete enzyme. Tissue specificity in the distribution of AMPK subtypes is believed to underpin a range of biological functions for AMPK, a central regulator of metabolic function and response. It is of particular interest for drug discovery purposes to compare AMPK isoforms that are most prevalent in human liver and muscle with isoforms present in key preclinical species. To complement immunocapture/immunodetection methods, which for AMPK are challenged by sequence similarities and difficulties of obtaining accurate relative quantitation, AMPK was captured from lysates of a range of cells and tissues using the ActivX ATP probe. This chemical probe covalently attaches desthiobiotin to one or more conserved lysyl residues in the ATP-binding sites of protein kinases, including AMPK, while also labeling a wide range of ATP-utilizing proteins. Affinity-based recovery of labeled proteins followed by gel-based fractionation of the captured sample was followed by proteomic characterization of AMPK polypeptides. In agreement with transcript-based analysis and previous indications from immunodetection, the results indicated that the predominant AMPK heterotrimer in human liver is α1ß2γ1 but that dog and rat livers mainly contain the α1ß1γ1 and α2ß1γ1 forms, respectively. Differences were not detected between the AMPK profiles of normal and diabetic human liver tissues.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteômica , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Cães , Células HEK293 , Hepatócitos/enzimologia , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Músculo Esquelético/enzimologia , Miocárdio/enzimologia , Especificidade de Órgãos , Estrutura Quaternária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Especificidade da Espécie
15.
Protein Expr Purif ; 87(1): 27-34, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23069765

RESUMO

The T helper cell-derived cytokine interleukin-17A (IL-17A) is a variably glycosylated disulfide-linked homodimer of 34-38 kDa. Its polypeptide monomer contains one canonical N-glycosylation site at Asn68, and human recombinant IL-17A was partly N-glycosylated when expressed in human kidney (HEK293) cells as a fusion protein with a melittin signal sequence and an N-terminal hexahistidine tag. Orbitrap mass analyses of the tryptic N-glycopeptide 63-69 indicated that the N-glycosylation was of the GalNAc-terminated type characteristic of cultured kidney cells. The mass spectrum of IL-17A monomer also included peaks shifted by +948 Da from the respective masses of unglycosylated and N-glycosylated polypeptides. These were caused by unpredicted partial O-glycosylation of Thr26 with the mucin-like structure -GalNAc(-NeuNAc)-Gal-NeuNAc. Identical O-glycosylation occurred in commercially sourced recombinant IL-17A also expressed in HEK293 cells but with a different N-terminal sequence. Therefore, the kidney host cell line not only imposed its characteristic pattern of N-glycosylation on recombinant IL-17A but additionally created an O-glycosylation not known to be present in the T cell-derived cytokine. Mammalian host cell lines for recombinant protein expression generally impose their characteristic patterns of N-glycosylation on the product, but this work exemplifies how a host may also unpredictably O-glycosylate a protein that is probably not normally O-glycosylated.


Assuntos
Interleucina-17/biossíntese , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/biossíntese , Sequência de Aminoácidos , Linfócitos T CD4-Positivos/metabolismo , Configuração de Carboidratos , Sequência de Carboidratos , Glicosilação , Células HEK293 , Humanos , Proteínas de Insetos/biossíntese , Proteínas de Insetos/química , Interleucina-17/química , Meliteno/biossíntese , Meliteno/química , Dados de Sequência Molecular , Peso Molecular , Mapeamento de Peptídeos , Sinais Direcionadores de Proteínas , Proteínas Recombinantes de Fusão/química , Espectrometria de Massas em Tandem
16.
Biochemistry ; 51(10): 2065-77, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22352991

RESUMO

Myeloperoxidase (MPO) is known to be inactivated and covalently modified by treatment with hydrogen peroxide and agents similar to 3-(2-ethoxypropyl)-2-thioxo-2,3-dihydro-1H-purin-6(9H)-one (1), a 254.08 Da derivative of 2-thioxanthine. Peptide mapping by liquid chromatography and mass spectrometry detected modification by 1 in a labile peptide-heme-peptide fragment of the enzyme, accompanied by a mass increase of 252.08 Da. The loss of two hydrogen atoms was consistent with mechanism-based oxidative coupling. Multistage mass spectrometry (MS(4)) of the modified fragment in an ion trap/Orbitrap spectrometer demonstrated that 1 was coupled directly to heme. Use of a 10 amu window delivered the full isotopic envelope of each precursor ion to collision-induced dissociation, preserving definitive isotopic profiles for iron-containing fragments through successive steps of multistage mass spectrometry. Iron isotope signatures and accurate mass measurements supported the structural assignments. Crystallographic analysis confirmed linkage between the methyl substituent of the heme pyrrole D ring and the sulfur atom of 1. The final orientation of 1 perpendicular to the plane of the heme ring suggested a mechanism consisting of two consecutive one-electron oxidations of 1 by MPO. Multistage mass spectrometry using stage-specific collision energies permits stepwise deconstruction of modifications of heme enzymes containing covalent links between the heme group and the polypeptide chain.


Assuntos
Heme/química , Peroxidase/química , Peroxidase/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cromatografia Líquida , Cristalografia por Raios X , Humanos , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Neutrófilos/enzimologia , Oxirredução , Fragmentos de Peptídeos/química , Mapeamento de Peptídeos , Espectrometria de Massas em Tandem
17.
J Am Chem Soc ; 133(50): 20536-45, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22050378

RESUMO

Multi-drug-resistant forms of the Gram-negative pathogen Acinetobacter baumannii are an emerging threat to human health and further complicate the general problem of treating serious bacterial infections. Meeting this challenge requires an improved understanding of the relationships between the structures of major therapeutic targets in this organism and the activity levels exhibited against it by different antibiotics. Here we report the first crystal structures of A. baumannii penicillin-binding proteins (PBPs) covalently inactivated by four ß-lactam antibiotics. We also relate the results to kinetic, biophysical, and computational data. The structure of the class A protein PBP1a was solved in apo form and for its covalent conjugates with benzyl penicillin, imipenem, aztreonam, and the siderophore-conjugated monocarbam MC-1. It included a novel domain genetically spliced into a surface loop of the transpeptidase domain that contains three conserved loops. Also reported here is the first high-resolution structure of the A. baumannii class B enzyme PBP3 in apo form. Comparison of this structure with that of MC-1-derivatized PBP3 of Pseudomonas aeruginosa identified differences between these orthologous proteins in A. baumannii and P. aeruginosa. Thermodynamic analyses indicated that desolvation effects in the PBP3 ligand-binding sites contributed significantly to the thermal stability of the enzyme-antibiotic covalent complexes. Across a significant range of values, they correlated well with results from studies of inactivation kinetics and the protein structures. The structural, biophysical, and computational data help rationalize differences in the functional performance of antibiotics against different protein targets and can be used to guide the design of future agents.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , beta-Lactamas/farmacologia , Acinetobacter baumannii/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Cristalização , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular
18.
J Am Chem Soc ; 133(34): 13311-3, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21815669

RESUMO

The pyrroloquinoline alkaloid family of natural products, which includes the immunosuppressant lymphostin, has long been postulated to arise from tryptophan. We now report the molecular basis of lymphostin biosynthesis in three marine Salinispora species that maintain conserved biosynthetic gene clusters harboring a hybrid nonribosomal peptide synthetase-polyketide synthase that is central to lymphostin assembly. Through a series of experiments involving gene mutations, stable isotope profiling, and natural product discovery, we report the assembly-line biosynthesis of lymphostin and nine new analogues that exhibit potent mTOR inhibitory activity.


Assuntos
Actinomycetales/metabolismo , Alcaloides/metabolismo , Alcaloides/farmacologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Pirróis/metabolismo , Pirróis/farmacologia , Quinolinas/metabolismo , Quinolinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Actinomycetales/química , Alcaloides/química , Inibidores Enzimáticos/química , Pirróis/química , Quinolinas/química , Serina-Treonina Quinases TOR/metabolismo
19.
J Antibiot (Tokyo) ; 64(8): 533-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21610714

RESUMO

Biogenesis of the pipecolate moiety of neuroprotective agent meridamycin in Streptomyces sp. NRRL30748 was investigated in feeding studies using lysine specifically labeled with (15)N at the α-amino or the ε-amino nitrogen position. Fourier transform mass spectrometry analysis with ultra-high mass resolving power and accurate mass measurement capability was employed to resolve the (15)N peak of labeled meridamycin from the (13)C peak of unlabeled meridamycin, allowing the precise calculation of labeling contents under each condition. The relative enrichment of (15)N-labeled meridamycin was ~43% with L-[α-(15)N]-lysine feeding and ~14% with L-[α-(15)N]-lysine feeding, suggesting two distinguishable pathways, with concomitant loss of either the ε-amino group or the α-amino group of lysine, were involved in the generation of the pipecolate moiety of meridamycin in this bacterium. PCR cloning using degenerate primers identified a proC gene encoding a putative pyrroline-5-carboxylate reductase, which was expected to catalyze the conversion of piperideine-6-carboxylate to pipecolate. However, inactivation of this locus did not significantly affect the incorporation of α-(15)N- or ε-(15)N-labeled lysine into meridamycin, indicating the existence of an alternative route for the last step of the lysine ε-transamination pathway. This work revealed the diversity and complexity of the biosynthetic pathways for pipecolate synthesis in the meridamycin producing bacterium Streptomyces sp. NRRL30748.


Assuntos
Vias Biossintéticas/genética , Macrolídeos/metabolismo , Fármacos Neuroprotetores/metabolismo , Streptomyces/metabolismo , Sequência de Aminoácidos , Isótopos de Carbono/metabolismo , Clonagem Molecular , DNA Bacteriano/genética , Técnicas de Inativação de Genes , Marcação por Isótopo , Modelos Biológicos , Dados de Sequência Molecular , Estrutura Molecular , Isótopos de Nitrogênio/metabolismo , Reação em Cadeia da Polimerase , Pirrolina Carboxilato Redutases/genética , Homologia de Sequência de Aminoácidos , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Protein Expr Purif ; 76(1): 72-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20888915

RESUMO

When the 34 kDa kinase domain of human spleen tyrosine kinase (Syk-KD) was expressed as a C-terminally His-tagged protein in baculovirus-infected Sf-21 insect cells, the purified protein included two forms that migrated slightly differently in SDS-polyacrylamide gel electrophoresis. Intact mass analysis and LC-MS/MS peptide mapping showed that the major and faster-migrating product had the intended amino-acid sequence and 0-6 phosphorylations. This material accounted for about 95% of the purified protein. The minor product was Syk-KD with a 26 amino-acid N-terminal extension. The result suggested the existence of an upstream alternative site for the initiation of translation, and this proved to be an ACG codon derived from the pBacPAK9 vector used to express Syk-KD. The ACG codon was preceded and followed by Kozak-type sequence elements (a purine in the -3 position and a G in the +4 position) that would have enhanced the viability of initiation at ACG. The initiating amino-acid residue was Met for both minor and major products, and both forms of the protein were α-N-acetylated. For the minor product, protein intact mass analysis and peptide mapping both gave results in agreement with the sequence predicted from the DNA. A similar result with the same underlying cause was obtained with insect cell expression of full-length Syk. It appears that similar results are possible whenever this vector is used.


Assuntos
Proteínas Recombinantes de Fusão/biossíntese , Spodoptera/metabolismo , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Sequência de Bases , Linhagem Celular , Códon de Iniciação , Vetores Genéticos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Dados de Sequência Molecular , Mapeamento de Peptídeos , Biossíntese de Proteínas , Proteínas Tirosina Quinases/biossíntese , Proteínas Tirosina Quinases/química , Proteínas Recombinantes de Fusão/química , Análise de Sequência de Proteína , Spodoptera/genética , Quinase Syk
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...