Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(3): 1530-1538, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688066

RESUMO

Based on the precise phase control V species adjustment of vanadium phosphorus oxides (VPOs), a series of metal oxides (Nb2O5, MoO3, WO3, and Bi2O3) were selected as modification agents to further enhance the catalytic activity and retain the excellent durability of VPO-TiO2-based catalysts for the new procedure of producing acrylic acid via acetic acid-formaldehyde condensation. At an elevated liquid hourly space velocity (LHSV), the (AA + MA) selectivity reached 92.3% with a (MA + AA) formation rate of 63.8 µmol-1 gcat -1 min-1 over the Nb-decorated catalyst (catalyst VTi-Nb), and it maintained good durability for up to 100 h. The detailed characterization results of XRD, Raman, XPS, NH3-TPD, CO2-TPD, and H2-TPR, demonstrated that the addition of Nb2O5 could observably enhance the catalytic efficiency of the VPO-TiO2 catalyst. It not only improved the catalyst durability by enhancing prereduction of the V5+ species, but also enhanced the active site density to improve the catalytic activity.

2.
ACS Appl Mater Interfaces ; 13(29): 34308-34319, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34279892

RESUMO

This study highlights the facet structure control of regular NixCo3-xO4 nanoplates and interfacial modulation through elemental doping and morphologically fitted assembly of Ti3C2Tx nanosheets for high performances in OER/HER and overall water splitting. Over the resulting Ni0.09Co2.91O4/Ti3C2Tx-HT in a solution of 1 M KOH, the OER and HER overpotentials of 262 and 210 mV, respectively, are achievable at a current density of 10 mA cm-2. In the case of the overall water splitting by using Ni0.09Co2.91O4/Ti3C2Tx-HT as anode and cathode catalysts, only a potential of 1.66 V is needed to obtain a current density of 10 mA cm-2, and the catalysts can stand for a period of 70 h, remarkably outperforming the RuO2-Pt/C-based catalyst and benefiting from the intensive association and interfacial function between the Ti3C2Tx and NixCo3-xO4 nanosheets. Interestingly, a surface reconstruction from the (112) to (111) facet structure occurred upon the fine-tuned Ni doping of regular NixCo3-xO4 hexagonal nanoplates and led to a highly active catalyst surface. At x = 0.09, the amount of Ni3+ becomes the highest, which is favorable for the generation of the critical OH intermediates on NixCo3-xO4/Ti3C2Tx-HT. The current study documented the significance of the well-controlled interfacial assembly of transition-metal oxide/MXenes as an effective electrocatalyst in the OER/HER and overall water splitting processes and provided the insights into the structure-performance correlation over such kinds of precious metal-free catalysts.

3.
Chem Commun (Camb) ; 56(7): 1022-1025, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31867592

RESUMO

A series of unsupported and supported vanadium phosphorus oxide catalysts were prepared by employing a new strategy, which significantly reduced the complexity of catalyst preparation. The greatly simplified catalyst fabrication benefits a greener and lower-cost process for practical applications. The currently fabricated systems showed ca. 90% target product(s) selectivity with a promising yield as well as catalyst durability.

4.
Sci Rep ; 9(1): 16988, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740731

RESUMO

A new type of supported vanadium phosphorus oxide (VPO) with self-phase regulation was simply fabricated (organic solvent free) for the first time by depositing the specific VPO precursor NH4(VO2)HPO4 onto the Siliceous Mesostructured Cellular Foams (MCF) with controlled activation. The resulting materials were found to be highly efficient and selective for sustainable acrylic acid (AA) plus methyl acrylate (MA) production via a condensation route between acetic acid (HAc) and formaldehyde (HCHO). A (AA + MA) yield of 83.7% (HCHO input-based) or a (AA + MA) selectivity of 81.7% (converted HAc-based) are achievable at 360 °C. The systematic characterizations and evaluations demonstrate a unique surface regulation occurring between the MCF and the NH4(VO2)HPO4 precursor. NH3 release upon activation of NH4(VO2)HPO4 precursor together with adsorption of NH3 by MCF automatically induces partial reduction of V5+ whose content is fine-tunable by the VPO loading. Such a functionalization simultaneously modifies phase constitution and surface acidity/basicity of catalyst, hence readily controls catalytic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...