Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(4): e0053623, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37358406

RESUMO

Hubei mosquito virus 2 (HMV2) is a novel mosquito virus that was first identified in 2016 in Hubei Province, China. Until now, HMV2 has been shown to be endemic in some areas of China and Japan, but its biological characteristics, epidemiology, and pathogenicity are not yet known. This report describes the detection of HMV2 in mosquitoes that were collected in Shandong Province in 2019 and presents the first isolation and molecular characterization of the virus. In this study, a total of 2,813 mosquitoes were collected and then divided into 57 pools, according to location and species. qRT-PCR and nested PCR were performed to confirm the presence of HMV2, and its genomic features, phylogenetic relationships, growth characteristics, and potential pathogenicity were further analyzed. The results showed that HMV2 was detected in 28 of the 57 mosquito pools and that the minimum infection rate (MIR) for HMV2 was 1.00% (28/2,813). A HMV2 strain and 14 viral partial sequences were obtained from the HMV2-positive pools, including one complete genome sequence. A phylogenetic analysis revealed that HMV2 from Shandong Province shared over 90% identity with other reported isolates and was closely related to the Culex inatomii luteo-like virus. IMPORTANCE Our study provided important epidemiological evidence for the epidemic of HMV2 in Shandong Province. Here, we report the first isolation and molecular characteristics of this virus and enrich our knowledge of the distribution of HMV2 in China.


Assuntos
Culex , Culicidae , Vírus da Encefalite Japonesa (Espécie) , Animais , Culex/genética , Filogenia , Vírus da Encefalite Japonesa (Espécie)/genética , RNA
2.
Ecotoxicol Environ Saf ; 212: 112014, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548569

RESUMO

The biosorption and bioaugmentation performances of Mucor circinelloides were investigated under different contact time, initial metal(loid) concentration and species. The microbe-plant interaction appeared synergistic with enhancing plant growth and alleviating oxidative damages induced by lead, cadmium and arsenic. The bioaugmentation with M. circinelloides led to significant immobilization on lead, cadmium and arsenic as indicated by the decreases of metal(loid) transfer and bioavailability in plant-microbe aqueous system. Lead, cadmium and arsenic were mainly allocated on cell wall and a few parts entered into intercellular system, suggesting cell wall adsorption and intracellular bioaccumulation served as the main mechanisms of M. circinelloides. The adsorption kinetics and isotherms on lead, cadmium and arsenic were fitted well with the pseudo-second-order and Langmuir models, with the maximum adsorption capacities of 500, 15.4 and 29.4 mg·g-1 fungal biomass at pH 6.0 and 25 â„ƒ. The optimum initial concentration and contact time were 300-10-20 mg·L-1 and 2 h. This study provides a basis for M. circinelloides as a promising adsorbent and bioaugmented agent for the cleanup of soil/aqueous environment contaminated with lead, cadmium and arsenic.


Assuntos
Arsênio/metabolismo , Cádmio/metabolismo , Chumbo/metabolismo , Mucor/metabolismo , Poluentes do Solo/metabolismo , Solanum nigrum , Adsorção , Arsênio/análise , Bioacumulação , Biodegradação Ambiental , Disponibilidade Biológica , Biomassa , Cádmio/análise , Concentração de Íons de Hidrogênio , Cinética , Chumbo/análise , Modelos Teóricos , Mucor/crescimento & desenvolvimento , Poluentes do Solo/análise , Solanum nigrum/metabolismo , Solanum nigrum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...