Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 608(Pt 1): 313-321, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626978

RESUMO

The demand for high safety lithium batteries has led to the rapid development of solid electrolytes. However, some inherent limitations of solid polymer electrolytes (SPEs) impede them achieving commercial value. In this work, a novel polyethylene oxide (PEO)-based solid electrolyte is reported. For the first time, biomaterial-based chitosan-silica (CS) hybrid particles serve as fillers, which can interact with polymer matrix to significantly improve the electrochemical performance. The optimized polymer electrolyte exhibits a maximum ion conductivity of 1.91 × 10-4 S·cm-1 at 30 °C when the mass ratio of PEO and CS is 4:1 (PCS4). All-solid-state LiFePO4|PCS4|Li cells deliver a high coulombic efficiency and stable cycling performance, remaining an excellent capacity of more than 96.2 % after 150 cycles. Furthermore, the wide electrochemical window (5.4 V) and steady interfacial stability provide the possibility for high-voltage batteries applications. NCM811|| Li cells are assembled and display reliable charge and discharge cycle properties.


Assuntos
Materiais Biocompatíveis , Lítio , Condutividade Elétrica , Fontes de Energia Elétrica , Íons
2.
J Colloid Interface Sci ; 594: 1-8, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33744729

RESUMO

This study aims to prepare an organic-inorganic reticular polymer electrolyte. Isocyanate acts as a bridge that connects fumed silica and PEO molecular chains. The PEO-TDI-SiO2 solid polymer electrolytes developed can significantly have improved ionic conductivity of 0.12 mS cm-1 at ambient temperature. This is because the TDI-SiO2 nanoparticles inhibits polymer crystallization which provides more continuous Li-ion transport pathways. Tests at 60 °C indicate that the cross-linked structure of covalent TSI bonded to PEO effectively enlarges the electrochemical window of the polymer electrolyte to 5.6 V. Also, the PTSI electrolyte membrane has a higher Li+ transference number of 0.33 compared to the PEO-LiTFSI electrolytes. It is worth noting that the assembled LiFePO4|PTSI8%|Li cells deliver outstanding rate performance and stable cycling performance. All these considerable merits of PTSI membrane demonstrate that PTSI is a promising candidate that can be used as solid polymer electrolytes for the next-generation Li-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...