Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(10): 4348-4358, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38709146

RESUMO

Developing new pharmaceuticals is a costly and time-consuming endeavor fraught with significant safety risks. A critical aspect of drug research and disease therapy is discerning the existence of interactions between drugs and proteins. The evolution of deep learning (DL) in computer science has been remarkably aided in this regard in recent years. Yet, two challenges remain: (i) balancing the extraction of profound, local cohesive characteristics while warding off gradient disappearance and (ii) globally representing and understanding the interactions between the drug and target local attributes, which is vital for delivering molecular level insights indispensable to drug development. In response to these challenges, we propose a DL network structure, MolLoG, primarily comprising two modules: local feature encoders (LFE) and global interactive learning (GIL). Within the LFE module, graph convolution networks and leap blocks capture the local features of drug and protein molecules, respectively. The GIL module enables the efficient amalgamation of feature information, facilitating the global learning of feature structural semantics and procuring multihead attention weights for abstract features stemming from two modalities, providing biologically pertinent explanations for black-box results. Finally, predictive outcomes are achieved by decoding the unified representation via a multilayer perceptron. Our experimental analysis reveals that MolLoG outperforms several cutting-edge baselines across four data sets, delivering superior overall performance and providing satisfactory results when elucidating various facets of drug-target interaction predictions.


Assuntos
Aprendizado Profundo , Proteínas , Proteínas/metabolismo , Proteínas/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Descoberta de Drogas/métodos , Modelos Moleculares
2.
Artigo em Inglês | MEDLINE | ID: mdl-38314513

RESUMO

Drug-drug interactions refer to the phenomena wherein the potency, duration, or effectiveness of one or multiple drugs undergo alterations of varying degrees as a result of their concurrent or sequential usage. The accurate identification of potential drug interactions plays a pivotal role in mitigating the risks associated with drug administration in patients, it also helps in minimizing the likelihood of hazardous situations arising during a patient's course of treatment. However, researchers have found that there is a problem of asymmetric drug interactions, where one drug may affect another but not vice versa. This adds to the difficulty of prediction, so in polypharmacy, the order of drug administration is critical to efficacy and safety, and few current studies predict asymmetric DDIs. Aiming at the above problems, we propose a framework based on multimodal data and a variational graph autoencoder named MAVGAE for predicting asymmetric drug interactions. The framework initially encodes multimodal data into low-dimensional representations and then utilizes a variational graph autoencoder for encoding and decoding. During the model training process, supervised learning is employed for the classification task with the incorporation of heterogeneity information, ensuring accurate prediction of drug interactions. Experimental validation on a large-scale drug dataset demonstrates the framework's high accuracy and reliability in predicting non-symmetrical drug interactions, offering effective support and guidance for drug research.

3.
J Chem Inf Model ; 64(7): 2158-2173, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37458400

RESUMO

Drug-drug interactions (DDI) are a critical aspect of drug research that can have adverse effects on patients and can lead to serious consequences. Predicting these events accurately can significantly improve clinicians' ability to make better decisions and establish optimal treatment regimens. However, manually detecting these interactions is time-consuming and labor-intensive. Utilizing the advancements in Artificial Intelligence (AI) is essential for achieving accurate forecasts of DDIs. In this review, DDI prediction tasks are classified into three types according to the type of DDI prediction: undirected DDI prediction, DDI events prediction, and Asymmetric DDI prediction. The paper then reviews the progress of AI for each of these three prediction tasks in DDI and provides a summary of the data sets used as well as the representative methods used in these three prediction directions. In this review, we aim to provide a comprehensive overview of drug interaction prediction. The first section introduces commonly used databases and presents an overview of current research advancements and techniques across three domains of DDI. Additionally, we introduce classical machine learning techniques for predicting undirected drug interactions and provide a timeline for the progression of the predicted drug interaction events. At last, we debate the difficulties and prospects of AI approaches at predicting DDI, emphasizing their potential for improving clinical decision-making and patient outcomes.


Assuntos
Inteligência Artificial , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Interações Medicamentosas , Aprendizado de Máquina , Bases de Dados Factuais
4.
BMC Bioinformatics ; 24(1): 278, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415176

RESUMO

MOTIVATION: Accurate identification of Drug-Target Interactions (DTIs) plays a crucial role in many stages of drug development and drug repurposing. (i) Traditional methods do not consider the use of multi-source data and do not consider the complex relationship between data sources. (ii) How to better mine the hidden features of drug and target space from high-dimensional data, and better solve the accuracy and robustness of the model. RESULTS: To solve the above problems, a novel prediction model named VGAEDTI is proposed in this paper. We constructed a heterogeneous network with multiple sources of information using multiple types of drug and target dataIn order to obtain deeper features of drugs and targets, we use two different autoencoders. One is variational graph autoencoder (VGAE) which is used to infer feature representations from drug and target spaces. The second is graph autoencoder (GAE) propagating labels between known DTIs. Experimental results on two public datasets show that the prediction accuracy of VGAEDTI is better than that of six DTIs prediction methods. These results indicate that model can predict new DTIs and provide an effective tool for accelerating drug development and repurposing.


Assuntos
Desenvolvimento de Medicamentos , Reposicionamento de Medicamentos , Interações Medicamentosas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...