Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998553

RESUMO

Physical techniques are widely applied in the food industry due to their positive impact on food quality and the environment. Temperature differences can effectively modify starch, but the resulting changes in starch structure and quality remain unclear. In this study, the corn starch was processed with high temperature, low temperature, and temperature difference (TD), including high temperature before low temperature (H-L) and low temperature before high temperature (L-H). The results showed that high temperature induced the umbilicus to concave inward shape and sharply decreased the amylose content, while low temperature increased the surface micropores and reduced the A-chain. TD reduced the fluorescence intensity and increased the clearness of the growth ring. TD elevated the relative crystallinity (RC), short-range order, A/B1 chains, hydrolysis parameters, and resistant starch (RS), and reduced amylose content, B2/B3 chains, and viscosity. Moreover, the corn starches treated by H-L had lower amylose content and higher RC, 1047/1022, A-chain, and RS than those treated by L-H. Overall, high temperature degraded the amylose and low temperature destroyed the amylopectin. During the TD, H-L can accelerate the starch molecular rearrangement more than the opposite temperature treatment order. These results will help produce novel starches for better food applications.

2.
Food Chem ; 421: 136228, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37105123

RESUMO

Yam (Dioscorea opposita Thunb.) is an important functional food in Asia. Yam starch usually has a low glycemic index. What is the structure requirement of starch to obtain a low glycemic index remains unknown. In order to understand the structure-glycemic index relationship, six yam starches from various regions with apparent structure difference were analyzed. Chinese yam starch (CYS) showed the lowest glycemic index. It presented as oval or round granules. Meanwhile, CYS showed a distinct A-type crystal structure while the others presented C-type crystal structure. The largest crystallinity, Rw, Mw/Mn, RS level, RS + SDS level, and the lowest peak viscosity, trough viscosity and C∞ values were found for CYS. These data explained the lowest glycemic index of CYS. The above results suggested that CYS was a good neutraceutical candidate and could be used in the diet of diabetes population.


Assuntos
Dioscorea , Amido , Amido/química , Dioscorea/química , Índice Glicêmico , Dieta , Ásia
3.
Food Chem ; 387: 132873, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390605

RESUMO

Biotransformation is an effective technique to modify the structure and physicochemical properties of carbohydrates. In this work, Chinese yam (Dioscorea opposita Thunb.) starch was fermented by lactobacteria. The effect of fermentation time (6, 12, 30, 42 and 72 h) on structure and physicochemical properties of Chinese yam starch were investigated. The microstructure was destroyed after lactobacteria fermentation for 42 and 72 h. The X-ray diffraction pattern of Chinese yam starch indicated a transformed A to A + V crystalline type. â†’ 4)-α-d-glucose-(1 â†’ from backbone and unreduced terminal α-d-glucose-(1 â†’ 4 from branch were identified by NMR spectra, and free glucose was only detected in fermented starch at 72 h. With the extension of fermentation time, the crystallinity and thermal parameters increased within 42 h and thereafter decreased. Mw, Mw/Mn, long chains of DP25-36 and DP ≥ 37, peak viscosity, trough viscosity, finally viscosity and setback presented a reverse trend.


Assuntos
Dioscorea , Dioscorea/química , Fermentação , Glucose , Amido/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...