Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 674: 823-833, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38955013

RESUMO

Designing and developing suitable oxygen evolution reaction (OER) catalysts with high activity and stability remain challenging in electrolytic water splitting. Hence, NiFe@NC@MoS2 core-bishell composites wrapped by molybdenum disulphide (MoS2) and nitrogen-doped graphene (NC) were prepared using hydrothermal synthesis in this research. NiFe@NC@MoS2 composite exhibits excellent performance with an overpotential of 288 mV and a Tafel slope of 53.2 mV·dec-1 at a current density of 10 mA·cm-2 in 1 M KOH solution, which is superior to commercial RuO2. NC and MoS2 bishells create profuse edge active sites that enhance the adsorption ability of OOH* while lowering the overall overpotential of the product and improving its oxygen precipitation performance. The density function theory(DFT) analysis confirms that the layered MoS2 in NiFe@NC@MoS2 provides additional edge active sites and enhances electron transfer, thus increasing the intrinsic catalytic activity. This research paves a novel way for developing OER electrocatalysts with excellent catalytic performance.

2.
Materials (Basel) ; 17(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612151

RESUMO

Water splitting is an important way to obtain hydrogen applied in clean energy, which mainly consists of two half-reactions: hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). However, the kinetics of the OER of water splitting, which occurs at the anode, is slow and inefficient, especially in acid. Currently, the main OER catalysts are still based on noble metals, such as Ir and Ru, which are the main active components. Hence, the exploration of new OER catalysts with low cost, high activity, and stability has become a key issue in the research of electrolytic water hydrogen production technology. In this paper, the reaction mechanism of OER in acid was discussed and summarized, and the main methods to improve the activity and stability of non-noble metal OER catalysts were summarized and categorized. Finally, the future prospects of OER catalysts in acid were made to provide a little reference idea for the development of advanced OER catalysts in acid in the future.

3.
Materials (Basel) ; 15(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36295190

RESUMO

Hydrogen evolution reaction (HER) is one promising technique to obtain high-purity hydrogen, therefore, exploiting inexpensive and high-efficiency HER electrocatalysts is a matter of cardinal significance under the background of achieving carbon neutrality. In this paper, a hydrothermal method was used to prepare the Cr-NiC2O4/NF (Ni foam) precursor. Then, the NiO-Cr-C/NF self-supporting HER catalyst was obtained by heating the precursor at 400 °C. The catalyst presents a 3D cellular nanospheres structure which was composed of 2D nanosheets. Microstructure characterization shows that Cr and C elements were successfully doped into NiO. The results of electrochemical measurements and density functional theory (DFT) calculations show that under the synergy of Cr and C, the conductivity of NiO was improved, and the Gibbs free energy of H* (∆GH*) value is optimized. As a result, in 1.0 M KOH solution the NiO-Cr-C/NF-3 (Ni:Cr = 7:3) HER catalyst exhibits an overpotential of 69 mV and a Tafel slope of 45 mV/dec when the current density is 10 mA·cm-2. Besides, after 20 h of chronopotentiometry, the catalytic activity is basically unchanged. It is demonstrated that C and Cr co-doping on the lattice of NiO prepared by a simple hydrothermal method and subsequent heat treatment to improve the catalytic activity and stability of the non-precious metal HER catalysts in an alkaline medium is facile and efficient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...