Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 138: 112614, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972212

RESUMO

Intestinal stem cells (ISCs) play a crucial role in maintaining the equilibrium and regenerative potential of intestinal tissue, thereby ensuring tissue homeostasis and promoting effective tissue regeneration following injury. It has been proven that targeting Toll-like receptors (TLRs) can help prevent radiation-induced damage to the intestine. In this study, we established an intestinal injury model using IR and evaluated the effects of CL429 on ISC regeneration both in vivo and in vitro. Following radiation exposure, mice treated with CL429 showed a significant increase in survival rates (100% survival in the treated group compared to 54.54% in the control group). CL429 also showed remarkable efficacy in inhibiting radiation-induced intestinal damage and promoting ISC proliferation and regeneration. In addition, CL429 protected intestinal organoids against IR-induced injury. Mechanistically, RNA sequencing and Western blot analysis revealed the activation of the Wnt and Hippo signaling pathways by CL429. Specifically, we observed a significant upregulation of YAP1, a key transcription factor in the Hippo pathway, upon CL429 stimulation. Furthermore, knockdown of YAP1 significantly attenuated the radioprotective effect of CL429 on intestinal organoids, indicating that CL429-mediated intestinal radioprotection is dependent on YAP1. In addition, we investigated the relationship between TLR2 and YAP1 using TLR2 knockout mice, and our results showed that TLR2 knockout abolished the activation of CL429 on YAP1. Taken together, our study provides evidence supporting the role of CL429 in promoting ISC regeneration through activation of TLR2-YAP1. And further investigation of the interaction between TLRs and other signaling pathways may enhance our understanding of ISC regeneration after injury.

2.
Immunology ; 172(4): 614-626, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38685744

RESUMO

Ionising radiation exposure can lead to acute haematopoietic radiation syndrome. Despite significant advancements in the field of radioprotection, no drugs with high efficacy and low toxicity have yet been approved by the Food and Drug Administration. FG-4592, as a proline hydroxylase inhibitor, may play an important role in radioprotection of the haematopoietic system. Mice were peritoneal injected with FG-4592 or normal saline. After irradiation, the survival time, body weight, peripheral blood cell and bone marrow cell (BMC) count, cell apoptosis, pathology were analysed and RNA-sequence technique (RNA-Seq) was conducted to explore the mechanism of FG-4592 in the haematopoietic system. Our results indicated that FG-4592 improved the survival rate and weight of irradiated mice and protected the spleen, thymus and bone marrow from IR-induced injury. The number of BMCs was increased and protected against IR-induced apoptosis. FG-4592 also promoted the recovery of the blood system and erythroid differentiation. The results of RNA-Seq and Western blot showed that the NF-κB signalling pathway and hypoxia-inducible factor-1 (HIF-1) signalling pathway were upregulated by FG-4592. Meanwhile, RT-PCR results showed that FG-4592 could promote inflammatory response significantly. FG-4592 exhibited radioprotective effects in the haematopoietic system by promoting inflammatory response and targeting the NF-κB, HIF signalling pathway.


Assuntos
Apoptose , Radiação Ionizante , Protetores contra Radiação , Animais , Camundongos , Protetores contra Radiação/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Sistema Hematopoético/efeitos dos fármacos , Sistema Hematopoético/efeitos da radiação , Síndrome Aguda da Radiação/prevenção & controle , Síndrome Aguda da Radiação/tratamento farmacológico , Hematopoese/efeitos dos fármacos , Hematopoese/efeitos da radiação , Lesões Experimentais por Radiação/prevenção & controle , Lesões Experimentais por Radiação/metabolismo , Irradiação Corporal Total , Glicina/análogos & derivados , Isoquinolinas
3.
Genomics ; 115(2): 110585, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36801437

RESUMO

BACKGROUND: The incidence of inflammatory bowel disease (IBD) is growing in the population. At present, the etiology of inflammatory bowel disease remains unclear, and there is no effective and low-toxic therapeutic drug. The role of the PHD-HIF pathway in relieving DSS-induced colitis is gradually being explored. METHODS: Wild-type C57BL/6 mice were used as a model of DSS-induced colitis to explore the important role of Roxadustat in alleviating DSS-induced colitis. High-throughput RNA-Seq and qRT-PCR methods were used to screen and verify the key differential genes in the colon of mice between normal saline (NS) and Roxadustat groups. RESULTS: Roxadustat could alleviate DSS-induced colitis. Compared with the mice in the NS group, TLR4 were significantly up-regulated in the Roxadustat group. TLR4 KO mice were used to verify the role of TLR4 in the alleviation of DSS-induced colitis by Roxadustat. CONCLUSION: Roxadustat has a repairing effect on DSS-induced colitis, and may alleviate DSS-induced colitis by targeting the TLR4 pathway and promote intestinal stem cell proliferation.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Regulação para Cima , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Modelos Animais de Doenças
4.
Cell Death Dis ; 13(10): 884, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266266

RESUMO

Intestinal stem cells (ISCs) are responsible for intestinal tissue homeostasis and are important for the regeneration of the damaged intestinal epithelia. Through the establishment of ionizing radiation (IR) induced intestinal injury model, we found that a TLR2 agonist, Zymosan-A, promoted the regeneration of ISCs in vivo and in vitro. Zymosan-A improved the survival of abdominal irradiated mice (81.82% of mice in the treated group vs. 30% of mice in the PBS group), inhibited the radiation damage of intestinal tissue, increased the survival rate of intestinal crypts and the number of ISCs after lethal IR in vivo. Through organoid experiments, we found that Zymosan-A promoted the proliferation and differentiation of ISCs after IR. Remarkably, the results of RNA sequencing and Western Blot (WB) showed that Zymosan-A reduced IR-induced intestinal injury via TLR2 signaling pathway and Wnt signaling pathway and Zymosan-A had no radioprotection on TLR2 KO mice, suggesting that Zymosan-A may play a radioprotective role by targeting TLR2. Moreover, our results revealed that Zymosan-A increased ASCL2, a transcription factor of ISCs, playing a core role in the process of Zymosan-A against IR-induced intestinal injury and likely contributing to the survival of intestinal organoids post-radiation. In conclusion, we demonstrated that Zymosan-A promotes the regeneration of ISCs by upregulating ASCL2.


Assuntos
Células-Tronco , Receptor 2 Toll-Like , Animais , Camundongos , Mucosa Intestinal/metabolismo , Células-Tronco/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , Zimosan/farmacologia
5.
Dose Response ; 20(3): 15593258221123679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132708

RESUMO

Accidental radiation exposure is a threat to human health that necessitates effective clinical diagnosis. Suitable biomarkers are urgently needed for early assessment of exposure dose. Existing technologies being used to assess the extent of radiation have notable limitations. As a radiation biomarker, miRNA has the advantages of simple detection and high throughput. In this study, we screened for miRNAs with dose and time dependent responses in peripheral blood leukocytes via miRNA sequencing in establishing the animal model of acute radiation injury. Four radiation-sensitive and stably expressed miRNAs were selected out in the 24 h group of leukocyte miRNAs: mmu-miR-130b-5p, mmu-miR-148b-5p, mmu-miR-184-3p, mmu-miR-26a-2-3p, and five were screened in the 48 h group of leukocyte miRNAs: mmu-miR-130b-5p, mmu-miR-423-5p, mmu-miR-676-3p, mmu-miR-150-5p, mmu-miR-342-3p.The correlation curves between their expression and irradiation dose were plotted. Then, the results were validated by RT-qPCR in mouse peripheral blood. As a result, mmu-miR-150-5p and mmu-miR-342-3p showed the highest correlation at 48h after irradiation, and mmu-miR-130b-5p showed good correlation at both 24 h and 48 h after irradiation. In a conclusion, the miRNAs that are sensitive to ionizing radiation with dose dependent effects were selected out, which have the potential of forming a rapid assessment scheme for acute radiation injury.

6.
Stem Cell Res Ther ; 13(1): 271, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729656

RESUMO

BACKGROUND: Severe ionizing radiation (IR)-induced intestinal injury associates with high mortality, which is a worldwide problem requiring urgent attention. In recent years, studies have found that the PHD-HIF signaling pathway may play key roles in IR-induced intestinal injury, and we found that FG-4592, the PHD inhibitor, has significant radioprotective effects on IR-induced intestinal injury. METHODS: In the presence or absence of FG-4592 treatment, the survival time, pathology, cell viability, cell apoptosis, and organoids of mice after irradiation were compared, and the mechanism was verified after transcriptome sequencing. The data were analyzed using SPSS ver. 19 software. RESULTS: Our results show that FG-4592 had significant radioprotective effects on the intestine. FG-4592 improved the survival of irradiated mice, inhibited the radiation damage of intestinal tissue, promoted the regeneration of intestinal crypts after IR and reduced the apoptosis of intestinal crypt cells. Through organoid experiments, it is found that FG-4592 promoted the proliferation and differentiation of intestinal stem cells (ISCs). Moreover, the results of RNA sequencing and Western blot showed that FG-4592 significantly upregulated the TLR4 signaling pathway, and FG-4592 had no radioprotection on TLR4 KO mice, suggesting that FG-4592 may play protective role against IR by targeting TLR4. CONCLUSION: Our work proves that FG-4592 may promote the proliferation and regeneration of ISCs through the targeted regulation of the TLR4 signaling pathway and ultimately play radioprotective roles in IR-induced injury. These results enrich the molecular mechanism of FG-4592 in protecting cells from IR-induced injury and provide new methods for the radioprotection of intestine.


Assuntos
Lesões por Radiação , Protetores contra Radiação , Animais , Apoptose , Glicina/análogos & derivados , Mucosa Intestinal/metabolismo , Intestinos , Isoquinolinas , Camundongos , Camundongos Endogâmicos C57BL , Lesões por Radiação/patologia , Protetores contra Radiação/farmacologia , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
7.
Toxicol Lett ; 357: 1-10, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34929306

RESUMO

Damage of Intestinal Stem Cells (ISCs) is the main cause of radiation induced-intestinal injury (RIII). Recently, hypoxia Inducible factor (HIF) was verified to be critical for promoting proliferation of ISCs, which suggested a protective role of HIF in the RIII. Thus, we investigated the effect of FG-4592, a novel up-regulator of HIF, on the protection of RIII. With/without FG-4592 treatment, the abdomen of mice was radiated, and intestinal injury was assessed. Especially, by intestinal organoid culture, the multiplication capacity and differentiation features of ISCs were detected. As a result, FG-4592, a novel up-regulator of HIF could remit RIII and promote regeneration and differentiation of ISCs after radiation, which were depended on HIF-2 rather than HIF-1.


Assuntos
Glicina/análogos & derivados , Fator 1 Induzível por Hipóxia/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/metabolismo , Isoquinolinas/farmacologia , Lesões por Radiação/tratamento farmacológico , Células-Tronco/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Glicina/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...