Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(3): 835-842, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36625647

RESUMO

Fractals are quite normal in nature. However, fractal self-assembly of organic semiconductors remains challenging. Herein, we develop a facile solution assembly route to access organic microwires (MWs) comprising an oligo(p-phenylenevinylene) derivative (OPV-A) with and without branching. Instead of kinetically controlled ß-OPV-A microrods (MRs), thermodynamically favored α-OPV-A gives fractal branching MW patterns. As-prepared 9,10-dicyanoanthracene (DCA) alloyed assemblies function as seeds to allow for the heteroepitaxial growth of branching α-OPV-A MWs via either coassembly or two-step seeded growth. Consequently, fractal MWs with single- and multisite growth were both achieved, accompanied by tailorable branching densities and hierarchies. Thermodynamic control and a well-matched epitaxial relationship should be crucial to the formation of fractal MW patterns. Importantly, the aligned α-OPV-A MW array functions as a multichannel optical gain medium and exhibits low-threshold amplified spontaneous emission (ASE). The present work deepens the research into fractal self-assembly of functional organic semiconductors.

2.
J Phys Chem Lett ; 13(44): 10424-10431, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36326286

RESUMO

Organic phosphorescence materials provide an opportunity to use triplets for lasing. However, population inversion based on phosphorescence is hard to establish, owing to low luminescent quantum efficiency and intensive optical loss. By comparison, thermally activated delayed fluorescence emitters exhibit excellent optical gain with the aid of the reverse intersystem crossing (RISC) process. In this work, we designed a multifunctional gain material, not only serving as a thermally activated delayed fluorescence (TADF) emitter with excellent optical gain but also working as a phosphorescence source with high utilization of triplets. The lone pair of electrons in oxygen substitutions promotes a fast spin-flip and high delayed fluorescence quantum yield (ΦDF = 55%), enabling TADF amplified spontaneous emissions (ASE) of CH2Cl2 solution. Single-crystalline nanowires of H-aggregates effectively lower triplet energy levels with high phosphorescence quantum yield (ΦP = 27%), demonstrating Fabry-Perot mode phosphorescence lasing at 630 nm.

3.
ACS Nano ; 16(2): 3290-3299, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35107255

RESUMO

In contrast to well-studied amphiphilic block copolymers (BCPs) and π-stacked dyes, living assembly of hydrophobic π-conjugated materials has not yet been explored to date. Using a microspacing physical vapor transport (PVT) technique, the prefabricated microrods of organic semiconductors involving 9,10-dicyanoanthracene (DCA, A) or its binary alloy (B) can act as seeds to initiate living homoepitaxial growth from their ends, giving elongated microrods with controlled length. Red-green-red tricolor fluorescent microrod heterostructures with low dispersity are further realized by living heteroepitaxial growth of B microrod blocks on A seed microrod tips. Upon varying the growth sequence of each block, reverse triblock microrods are also accessible. Such a seed-induced living growth is applicable to triblock microrod heterostructures of more binary combinations as well as even more complex penta- and hepta-block heterostructures comprising A and B. By virtue of a convenient vapor-phase growth method, the present work demonstrates the generality of living assembly of π-conjugated materials.

4.
Angew Chem Int Ed Engl ; 60(52): 27046-27052, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34676654

RESUMO

We report the synthesis of hyperbranched organic microwire (MW) networks comprising 1,4-bis(pentafluorostyryl)benzene (10Ft) and 9,10-bis(phenylethynyl)anthracene (BA) using a simple solution co-assembly route. Pure 10Ft or BA assemblies cannot produce such complex MW networks; in contrast with a binary cocrystal of 10Ft and BA with a 2:1 molar ratio ((2:1)10Ft:BA), which is formed via intermolecular arene-perfluoroarene (AP) interactions. A new generation of multiple MWs grow epitaxially on the previous generation of MWs to form MW arrays in which BA may also act as an intermediate product to facilitate the regeneration of (2:1)10Ft:BA. Highly aligned and well-connected MW networks enable superior optical waveguiding ability. Moreover, a red-emitting dopant, 5,12-bis(phenylethynyl)naphthacene (BN) was incorporated into (2:1)10Ft:BA host MWs, giving light-harvesting hierarchical MW networks via an energy-transfer (ET) process. The realization of the hyperbranched MWs provides us with deep insight into the rational creation of complex branched arrays from functional organic cocrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...